Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Detecting Magneto-Optical Interactions in Nanostructures

DOI
https://doi.org/10.31875/2410-4701.2024.11.08
Submitted
October 1, 2024
Published
2024-09-30

Abstract

Effects due to magneto-optical interactions are responsible for most of the phenomena discovered in optoelectronics and spintronics. Magneto-optical interactions can generate elementary excitations of the order of light-magnetic matter, which can flow under certain conditions. Here, we observe the intensities of magneto-optical interactions in hexagonal arrays of magnetic nanowires using experimental measurements and simulations. Nanowires of three materials (cobalt-Co, iron-Fe, and nickel-Ni) were electrodeposited on alumina membranes by the AC electrodeposition method. Our results reveal that the magneto-optical behavior can produce, under certain conditions, a kind of avalanche of magneto-optical interactions, which is dynamic. Such an observation shows the possibility of generating a magneto-optical current (spin-opto current).

References

  1. W. W. G. Silva et al. Analyzing the Magnetic Influence on Magneto-optical Interactions. J. Supercond. Nov. Magn. 36, 951 (2023). https://doi.org/10.1007/s10948-023-06530-7
  2. J. Holanda, Analyzing the magnetic interactions in nanostructures that are candidates for applications in spintronics, J. Phys. D: Appl. Phys. 54, 245004 (2021). https://doi.org/10.1088/1361-6463/abeb40
  3. U. Cvelbar, Large-scale synthesis of nanowires, J. Phys. D: Appl. Phys. 44, 174014 (2011). https://doi.org/10.1088/0022-3727/44/17/174014
  4. L. Liu, Y. Diao, S. Xia, F. Lu, J. Tian, A first principle study on systematic stability and electronic properties of GaN nanowire surface with Cs/Li/NF3 co-adsorption, Appl. Surface Science, 478, 393 (2019). https://doi.org/10.1016/j.apsusc.2019.01.279
  5. Z. Lv, L. Liu, X. Zhangyang et al. Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode. Appl. Phys. A 126, 152 (2020). https://doi.org/10.1007/s00339-020-3312-3
  6. J. Holanda, C. Campos, C. A. Franca, E. Padron-Hernandez. Effective surface anisotropy in polycrystalline ferromagnetic nanowires. J. Alloys and Compounds 617, 639 (2014). https://doi.org/10.1016/j.jallcom.2014.07.219
  7. Y. Xiong, H. Luo, Y. Nie, F. Chen, W. Day, X. Wang, Y. Cheng, R. Gong., Synergistic effect of silica coated porous rodlike nickel ferrite and multiwalled carbon nanotube with improved electromagnetic wave absorption performance, J. All. Comp. 802, 364 (2019). https://doi.org/10.1016/j.jallcom.2019.06.174
  8. J. Holanda, D. B. O. Silva, E. Padron-Hernandez. Angular dependence of the coercivity in arrays of ferromagnetic nanowires. J. Magn. and Magn. Mater. 378, 228 (2015). https://doi.org/10.1016/j.jmmm.2014.11.046
  9. A. Mourachkine, O. V. Yazyev, C. Ducat, J.-Ph Ansermet, Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field, Nano Lett. 8, 3683 (2008). https://doi.org/10.1021/nl801820h
  10. O. Yalcin et al., A comparison of the magnetic properties of Ni and Co nanowires deposited in different templates and on different substrates, J. Magn. Magn. Mater., 373, 207 (2015). https://doi.org/10.1016/j.jmmm.2014.04.004
  11. A. Aharoni, Angular dependence of nucleation by curling in a prolate spheroid, J. Appl. Phys. 82, 1281 (1997). https://doi.org/10.1063/1.365899
  12. R. Lavin et al., Angular dependence of magnetic properties in Ni nanowire arrays, J. Appl. Phys. 106, 103903 (2009). https://doi.org/10.1063/1.3257242
  13. A. Kuznetsov et al. Magnetic light. Sci Rep 2, 492 (2012). https://doi.org/10.1038/srep00492
  14. M. Wang et al. Magnetic spin-orbit interaction of light. Light Sci. Appl. 7, 24 (2018). https://doi.org/10.1038/s41377-018-0018-9
  15. F. Dirnberger et al. Magneto-optics in a van der Waals magnet tuned by self-hybridized polaritons. Nature 620, 533 (2023). https://doi.org/10.1038/s41586-023-06275-2
  16. M. Faraday, Philos. Trans. Roy. Soc. London 1, 136 (1846).
  17. S. Sugano and N. Kojima, Magneto-optics, Springer series in solid-state sciences, Springer, Berlin (2000). https://doi.org/10.1007/978-3-662-04143-7
  18. J. Kerr LL.D. XLIII. On rotation of the plane of polarization by reflection from the pole of a magnet , The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3:19, 321-343 (1877). https://doi.org/10.1080/14786447708639245
  19. Z. Q. Qiu, S. D. Bader, Surface magneto-optic Kerr effect, Rev. Sci. Instrum. 71, 1243 (2000). https://doi.org/10.1063/1.1150496
  20. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy, Academic, Boston (1990). https://doi.org/10.1016/B978-0-08-057104-1.50011-9
  21. X.-S. Zhu et al. A method to measure the two-dimensional image of magneto-optical Kerr effect. Rev. Sci. Instrum. 74, 4718-4722 (2003). https://doi.org/10.1063/1.1618012
  22. A. Hubert and R. Schafer, Magnetic Domains. Springer, Berlin (1998).
  23. G. Zhang et al. Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism. Nature Phys 5, 499 (2009). https://doi.org/10.1038/nphys1315
  24. G. P. Zhang et al. Generating high-order optical and spin harmonics from ferromagnetic monolayers. Nat Commun 9, 3031 (2018). https://doi.org/10.1038/s41467-018-05535-4
  25. L. Liu, Y. Diao, S. Xia, F. Lu, J. Tian, A first principle study on systematic stability and electronic properties of GaN nanowire surface with Cs/Li/NF3 co-adsorption, 478, 393 (2019). https://doi.org/10.1016/j.apsusc.2019.01.279
  26. Z. Lv, L. Liu, X. Zhangyang et al. Enhanced absorptive characteristics of GaN nanowires for ultraviolet (UV) photocathode. Appl. Phys. A 126, 152 (2020). https://doi.org/10.1007/s00339-020-3312-3
  27. Y. Xiong, H. Luo, Y. Nie, F. Chen, W. Day, X. Wang, Y. Cheng, R. Gong., Synergistic effect of silica coated porous rodlike nickel ferrite and multiwalled carbon nanotube with improved electromagnetic wave absorption performance, J. All. Comp. 802, 364 (2019). https://doi.org/10.1016/j.jallcom.2019.06.174
  28. N. S. Mueller et al. Deep strong light-matter coupling in plasmonic nanoparticle crystals. Nature 583(7818), 780 (2020). https://doi.org/10.1038/s41586-020-2508-1
  29. O. Yalcin et al., A comparison of the magnetic properties of Ni and Co nanowires deposited in different templates and on different substrates, J. Magn. Magn. Mater., 373, 207 (2015). https://doi.org/10.1016/j.jmmm.2014.04.004
  30. A. Dong et al. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474 (2010). https://doi.org/10.1038/nature09188
  31. M. B. Ross. Nanoscale form dictates mesoscale function in plasmonic DNA-nanoparticle superlattices. Nat. Nanotechnol. 10, 453 (2015). https://doi.org/10.1038/nnano.2015.68
  32. A. Mourachkine, O. V. Yazyev, C. Ducat, J.-Ph Ansermet, Template nanowires for spintronics applications: nanomagnet microwave resonators functioning in zero applied magnetic field, Nano Lett. 8, 3683 (2008). https://doi.org/10.1021/nl801820h
  33. C. Bran et al., Direct observation of transverse and vortex metastable magnetic domains in cylindrical nanowires, Phys. Rev. B 96, 125415 (2017). https://doi.org/10.1103/PhysRevB.96.125415
  34. P. Landeros et al., Reversal modes in magnetic nanotubes, Appl. Phys. Lett. 90, 102501 (2007). https://doi.org/10.1063/1.2437655
  35. O. Henkel, Remanenzverhalten und wechselwirkungen in hartmagnetischen teilchenkollektiven, Status Solidi 7, 919 (1964). https://doi.org/10.1002/pssb.19640070320
  36. P. E. Kelly, K. O’Gray, P. I. Mayo, R. W. Chantrell, Switching mechanisms in cobalt-phosphorus thin films, IEEE Trans. Magn. 25, 3881 (1989). https://doi.org/10.1109/20.42466
  37. I. Klik and Y. D. Yao and C. R. Chang, Henkel plots for thermally relaxing systems, J. Appl. Phys. 81, 5230 (1997). https://doi.org/10.1063/1.364476
  38. P. I. Mayo, K. O’Grady, P. E. Kelly, and J. Cambridge, I. L. Sanders and T. Yogi, R. W. Chantrell, A magnetic evaluation of interaction and noise characteristics of CoNiCr thin films, J. Appl. Phys. 69, 4733 (1991). https://doi.org/10.1063/1.348263
  39. C. J. Buehler and I. D. Mayergoyz, Henkel plots and the Preisach model of hysteresis, J. Appl. Phys. 79, 5746 (1996). https://doi.org/10.1063/1.362239
  40. E. P. Wohlfarth, Relations between Different Modes of Acquisition of the Remanent Magnetization of Ferromagnetic Particles, J. Appl. Phys. 29, 595 (1958). https://doi.org/10.1063/1.1723232