Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Bacterial Cellulose: A Multifunctional Platform for Biomedical Applications

DOI
https://doi.org/10.31875/2410-4701.2024.11.09
Published
2024-10-08

Abstract

Bacterial cellulose (BC), a biopolymer synthesized by various bacterial species, has emerged as a promising material for biomedical applications due to its unique properties, including high purity, biocompatibility, mechanical strength, and structural similarity to the extracellular matrix. This review explores the advancements in BC research over the last decade, focusing on its applications in tissue engineering, wound healing, and drug delivery systems. While BC offers numerous benefits, challenges such as large-scale production, structural modification, however regulatory approval hinder its broader clinical use. Recent studies have introduced innovative solutions, such as using agro-industrial waste to lower production costs and combining BC with other materials to enhance its bioactivity. As research progresses, BC has the potential to revolutionize the field of biomedicine, offering sustainable, versatile, and effective solutions for a wide range of medical applications.

References

  1. Kalyoncu EE, Peşman E. Bacterial cellulose as reinforcement in paper made from recycled office waste pulp. BioResources 2020; 15: 8496-514. https://doi.org/10.15376/biores.15.4.8496-8514
  2. Wasim M, Shi F, Liu J, Zhang H, Zhu K, Tian Z. Synthesis and characterization of curcumin/MMT-clay-treated bacterial cellulose as an antistatic and ultraviolet-resistive bioscaffold. Journal of Polymer Research 2022; 29. https://doi.org/10.1007/s10965-022-03265-2
  3. Almeida EVR, Morgado DL, Ramos LA, Frollini E. Sisal cellulose and its acetates: generation of films and reinforcement in a one-pot process. Cellulose 2013; 20: 453-65. https://doi.org/10.1007/s10570-012-9802-5
  4. Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydrate Polymers 2017; 164: 214-21. https://doi.org/10.1016/j.carbpol.2017.01.061
  5. Picheth GF, Pirich CL, Sierakowski MR, Woehl MA, Sakakibara CN, de Souza CF, et al. Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules 2017; 104: 97-106. https://doi.org/10.1016/j.ijbiomac.2017.05.171
  6. Gorgieva S, Trček J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials 2019; 9: 1352. https://doi.org/10.3390/nano9101352
  7. Liu W, Du H, Zhang M, Liu K, Liu H, Xie H, et al. Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustainable Chemistry & Engineering 2020; 8: 7536-62. https://doi.org/10.1021/acssuschemeng.0c00125
  8. Sousa RB, Dametto AC, Sábio RM, de Carvalho RA, Vieira EG, Oliveira AF do A, et al. Cerium-doped calcium phosphates precipitated on bacterial cellulose platform by mineralization. Ceramics International 2020; 46: 26985-90. https://doi.org/10.1016/j.ceramint.2020.07.175
  9. Ul-Islam M, Khan T, Park JK. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydrate Polymers 2012; 89: 1189-97. https://doi.org/10.1016/j.carbpol.2012.03.093
  10. Czaja W, Krystynowicz A, Bielecki S, Brownjr R. Microbial cellulose-the natural power to heal wounds. Biomaterials 2006; 27: 145-51. https://doi.org/10.1016/j.biomaterials.2005.07.035
  11. Li Y, Sun Z, Liu D, Lu S, Li F, Gao G, et al. Bacterial Cellulose Composite Solid Polymer Electrolyte With High Tensile Strength and Lithium Dendrite Inhibition for Long Life Battery. Energy & Environmental Materials 2020; 4: 434-43. https://doi.org/10.1002/eem2.12122
  12. Langer R, Vacanti J. Tissue engineering. Science 1993; 260: 920-6. https://doi.org/10.1126/science.8493529
  13. Pollok JM, Vacanti JP. Tissue engineering. Seminars in Pediatric Surgery 1996; 5: 191-6.
  14. Pandey AR, Singh US, Momin M, Bhavsar C. Chitosan: Application in tissue engineering and skin grafting. Journal of Polymer Research 2017; 24. https://doi.org/10.1007/s10965-017-1286-4
  15. Rodrigues G, Tássia B, Henrique G, Cláudia A, María Angélica Miglino. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. International Journal of Molecular Sciences 2022; 23: 3955-5. https://doi.org/10.3390/ijms23073955
  16. Zhong M, Li J, Tang A, Zhang Q, Ji D, Peng M, et al. A facile green approach for fabricating bacterial cellulose scaffold with macroporous structure and cell affinity. Journal of Bioactive and Compatible Polymers 2019; 34: 442-52. https://doi.org/10.1177/0883911519877432
  17. Luo W, Guo N, Wang L, Jia D, Xu M, Zhang S, et al. Homogeneous activation induced by bacterial cellulose nanofibers to construct interconnected microporous carbons for enhanced capacitive storage. Journal of Colloid and Interface Science 2023; 636: 33-41. https://doi.org/10.1016/j.jcis.2022.12.170
  18. Eroglu A. Basaran, Coral G. Preparation and characterization of a 3-dimensional macroporous bacterial cellulose scaffold for in vitro tissue engineering applications. Digest Journal of Nanomaterials and Biostructures 2021; 16: 1011-7. https://doi.org/10.15251/DJNB.2021.163.1011
  19. Aki D, Ulag S, Unal S, Sengor M, Ekren N, Lin C-C, et al. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Materials & Design 2020; 196: 109094. https://doi.org/10.1016/j.matdes.2020.109094
  20. Oran D, Unal S, Gunduz O. Evaluation of bacterial cellulose/quince seed mucilage composite scaffold for wound dressing. Emergent Materials 2022. https://doi.org/10.1007/s42247-022-00352-4
  21. Cakmak AM, Unal S, Sahin A, Oktar FN, Sengor M, Ekren N, et al. 3D Printed Polycaprolactone/Gelatin/Bacterial Cellulose/Hydroxyapatite Composite Scaffold for Bone Tissue Engineering. Polymers 2020; 12: 1962. https://doi.org/10.3390/polym12091962
  22. Radu CD, Verestiuc L, Ulea E, Lipsa FD, Vulpe V, Munteanu C, et al. Evaluation of Keratin/Bacterial Cellulose Based Scaffolds as Potential Burned Wound Dressing. Applied Sciences 2021; 11: 1995. https://doi.org/10.3390/app11051995
  23. Luo H, Yin C, Zhong B, Li W, Yang Z, Zhu H, et al. Modifying Porous Bacterial Cellulose with Chondroitin Sulfate/Gelatin for Improved Biocompatibility. Fibers and Polymers 2023; 24: 975-84. https://doi.org/10.1007/s12221-023-00036-8
  24. Phatchayawat PP, Khamkeaw A, Yodmuang S, Phisalaphong M. 3D bacterial cellulose-chitosan-alginate-gelatin hydrogel scaffold for cartilage tissue engineering. Biochemical Engineering Journal 2022; 184: 108476. https://doi.org/10.1016/j.bej.2022.108476
  25. Hou Y, Wang X, Yang J, Zhu R, Zhang Z, Li Y. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. Journal of Biomedical Materials Research Part A 2018; 106: 1288-98. https://doi.org/10.1002/jbm.a.36330
  26. Panaitescu DM, Stoian S, Frone AN, Vlăsceanu GM, Baciu DD, Gabor AR, et al. Nanofibrous scaffolds based on bacterial cellulose crosslinked with oxidized sucrose. International Journal of Biological Macromolecules 2022; 221: 381-97. https://doi.org/10.1016/j.ijbiomac.2022.08.189
  27. Miron A, Calin Giurcaneanu, Mara Mădălina Mihai, Beiu C, Vlad Mihai Voiculescu, Popescu M, et al. Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics. 2023 May 28; 15(6): 1606-6. https://doi.org/10.3390/pharmaceutics15061606
  28. Windarsih A, Indrianingsih AW, Maryana R, Apriyana W, Rosyida VT, Nurhayati S, et al. Gold modified bacterial cellulose from coconut water waste and its antibacterial activity. Waste and Biomass Valorization. 2022 Apr 20; 13(10): 4157-64. https://doi.org/10.1007/s12649-022-01769-y
  29. Jalili Tabaii M, Emtiazi G. Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. Journal of Drug Delivery Science and Technology. 2018 Apr; 44: 244-53. https://doi.org/10.1016/j.jddst.2017.12.019
  30. Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, et al. Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules. 2020 Jan 22; 21(5): 1802-11. https://doi.org/10.1021/acs.biomac.9b01724
  31. Nagmetova G, Berthold-Pluta A, Garbowska M, Kurmanbayev A, Stasiak-Różańska L. Antibacterial Activity of Biocellulose with Oregano Essential Oil against Cronobacter Strains. Polymers. 2020 Jul 24; 12(8): 1647. https://doi.org/10.3390/polym12081647
  32. Kimia Sarraf Mamouri, Somayeh Rahaiee, Zare M, Mehrab Nasiri Kenari, Navideh Mirzakhani. Physicochemical and thermal characterization, and evaluation of a bacterial cellulose/Barhang gum-based dressing for wound healing. International Journal of Biological Macromolecules. 2023 Jul 1; 242: 124660-0. https://doi.org/10.1016/j.ijbiomac.2023.124660
  33. Shao W, Liu H, Wang S, Wu J, Huang M, Min H, et al. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydrate Polymers [Internet]. 2016 Jul 10 [cited 2022 Apr 11]; 145: 114-20. Available from: https: //www.sciencedirect.com/science/article/abs/pii/S0144861716301308. https://doi.org/10.1016/j.carbpol.2016.02.065
  34. Liang S. Advances in drug delivery applications of modified bacterial cellulose-based materials. Frontiers in Bioengineering and Biotechnology. 2023 Aug 4; 11. https://doi.org/10.3389/fbioe.2023.1252706
  35. Mensah A, Rodgers AM, Eneko Larrañeta, McMullan L, Murtaza Tambuwala, Callan JF, et al. Treatment of Periodontal Infections, the Possible Role of Hydrogels as Antibiotic Drug-Delivery Systems. Antibiotics (Basel). 2023 Jun 19; 12(6): 1073-3. https://doi.org/10.3390/antibiotics12061073
  36. Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: Emerging applications in drug delivery. Journal of Controlled Release. 2019 Apr; 300: 93-101. https://doi.org/10.1016/j.jconrel.2019.02.044
  37. Souto EB, Cano A, Martins-Gomes C, Coutinho TE, Zielińska A, Silva AM. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering [Internet]. 2022 Apr 1; 9(4): 158. Available from: https: //www.mdpi.com/2306-5354/9/4/158/htm#: ~: text=Microemulsions%20and%20nanoemulsions%20are%20lipid. https://doi.org/10.3390/bioengineering9040158
  38. Pan X, Li J, Ma N, Ma X, Gao M. Bacterial cellulose hydrogel for sensors. Chemical Engineering Journal. 2023 Apr; 461: 142062. https://doi.org/10.1016/j.cej.2023.142062
  39. Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, et al. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics. 2017 Feb 1; 17(2): 249-54. https://doi.org/10.1016/j.cap.2016.12.001
  40. Jianbin Ye, Jianqing Li, Xiangjiang Wang, Qiuhui Wang, Shouan Wang, Honglin Wang, Hu Zhu, Jia Xu. Preparation of bacterial cellulose-based antibacterial membranes with prolonged release of drugs: Emphasis on the chemical structure of drugs. 2024 January; 323: 121379. https://doi.org/10.1016/j.carbpol.2023.121379
  41. Lígia Costa, Alexandre F. Carvalho, António J.S. Fernandes, Teresa Campos, Nuno Dourado, Florinda M. Costa, Miguel Gama. Bacterial nanocellulose as a simple and tailorable platform for controlled drug release. 2024 September; 663: 124560. https://doi.org/10.1016/j.ijpharm.2024.124560
  42. Silva MF, Andrade RA, Pereira JA. Biomedical applications of bacterial cellulose: A review. Carbohydr Polym. 2020; 235: 115939.
  43. Brown AJ, Smith RA, Jones PD. Advancements in bacterial cellulose: A versatile biomaterial. Biomater Sci. 2019; 7(5): 1401-10.
  44. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2011; 50(24): 5438-66. https://doi.org/10.1002/anie.201001273
  45. Gomes RJ, Silva JC, Moreira CJ. Bacterial cellulose production in bioreactors: A review. Process Biochem. 2018; 72: 192-203.
  46. Shoda M, Sugano Y. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng. 2005; 10(1): 1-8. https://doi.org/10.1007/BF02931175
  47. Shoda M, Sugano Y. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng. 2005; 10(1): 1-8. https://doi.org/10.1007/BF02931175
  48. Wang S, Lu A, Zhang L. Recent advances in bacterial cellulose-based materials for biomedical applications. Prog Polym Sci. 2011; 46: 1-24.
  49. Ullah H, Santos D, Khan MA, Khan RA. Bacterial cellulose: Structure, properties, and applications in drug delivery. Adv Drug Deliv Rev. 2016; 70(4): 1-14.
  50. Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J Control Release. 2014; 190: 229-45. https://doi.org/10.1111/jphp.12234
  51. Abol-Fotouh D, El-Din Hassan E, Omer AM. Bacterial cellulose production and its industrial applications: A review. J Biol Eng. 2020; 14(1): 1-16.
  52. Ferreira FV, Lima PR. Regulatory pathways for the approval of bacterial cellulose as a biomaterial. J Regul Sci. 2017; 5(3): 45-52.
  53. Fontana JD, de Souza AM, Fontana CK. Nanocellulose: Current applications and future perspectives. J Appl Polym Sci. 2017; 134(30): 45340.
  54. Gama M, Gatenholm P, Klemm D. Bacterial nanocellulose: A sophisticated multifunctional material. CRC Press; 2016. https://doi.org/10.1201/b12936
  55. Rodrigues AE, Silva CR, Martins JP. Bacterial cellulose in tissue engineering: From the lab to clinical applications. Mater Sci Eng C. 2022; 128: 112333.
  56. Czaja WK, Young DJ, Kawecki M, Brown RM. The future prospects of microbial cellulose in biomedical applications. Biomaterials. 2007; 28(35): 5407-21.
  57. Gutenberg R, Martins JP, Silva JS. 3D bioprinting of bacterial cellulose scaffolds for tissue engineering. Tissue Eng Part B Rev. 2018; 24(6): 508-19.
  58. Mendes LF, Marques AP, Silva TH. Nanocomposites based on bacterial cellulose and nanoparticles for biomedical applications. Nanomedicine. 2020; 15(2): 125-43.
  59. Seabra AB, Durán N, Rubilar O. Nanocomposites of bacterial cellulose and silver nanoparticles for wound healing applications. J Nanobiotechnology. 2019; 17(1): 1-12.
  60. Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YH. Antibacterial and wound healing properties of bacterial cellulose-silver nanoparticles nanocomposites. Mater Sci Eng C. 2013; 36: 111-8.
  61. Santos MA, Almeida AR. Bacterial cellulose: A promising platform for gene therapy applications. J Genet Eng Biotechnol. 2021; 19(1): 1-13.
  62. Thomas S, Thomas MG, Vallée A. Encapsulation and sustained release of therapeutic agents using bacterial cellulose. J Mater Sci Mater Med. 2015; 26(1): 1-11.
  63. Costa SM, Silva NC, Souza JP. Sustainable production of bacterial cellulose from agro-industrial wastes. J Clean Prod. 2019; 233: 1176-85.
  64. Hong F, Gu M, He X. Application of agricultural wastes in the production of bacterial cellulose: A sustainable approach. Environ Technol Innov. 2018; 9: 1-10.
  65. Viana GA, Passos JR, Lemos DS. Bacterial cellulose production using agro-industrial residues: Advances and future trends. Biotechnol Rep. 2020; 26.