High demand on energy conversion in DSSC, requires development of well-organized TiO2 nanotube structures because of their large surface area-to-volume ratio, superior lifetime and provision of optimal pathways for electron percolation. In this work multi-layered Titanium dioxide nanotubes (MTNTs) have been fabricated by an electrochemical anodization technique. MTNTs were annealed at 350‚°C, 450‚°C, 550‚°C and 650‚°C. The structural and morphological properties of the MTNTs have been evaluated by XRD, Confocal Raman Microscopy (CRM) through Large Area Scan (LAS), Depth Profiling (DP) and SEM analysis. SEM-EDX has been employed for element elucidation of TNTs. SEM analysis has revealed the change in surface with increase in annealing temperature. Moreover SEM analysis has revealed the presence of porous and MTNTs for the samples annealed at 350‚°C and 650‚°C with modal pore size of 35.56 nm and 31.05 nm respectively. EDX analysis has revealed that the fabricated MTNTs consist of Ti and O atoms. CRM has confirmed the presence of Anatase phase TiO2 with Raman vibration modes at 142.37 cm-1, 199.04 cm-1, 394.67 cm-1, 516.16 cm-1 and 639.29 cm-1with the Rutile phase TiO2 with Raman vibration modes at 445.26 cm-1 and 612.07 cm-1. The XRD analysis has revealed that the MTNTs consist of multiphase Anatase and Rutile phase depending on the annealing temperature. AFM has confirmed the existence of porous nano-tubular structure for all samples.
References
D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Grätzel. Application of highly ordered TiO2 nanotube arrays in flexible dyesensitized solar cells. ACS Nano 2008; 6: 1113-1136. https://doi.org/10.1021/nn800174y
A. Ghicov, S.P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, et al. TiO2 Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency. Chem Asian J 2009; 4: 55-60. https://doi.org/10.1002/asia.200800441
P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010; 2: 45. https://doi.org/10.1039/B9NR00131J
J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, X. Liu, et al. High temperature crystallization of free‐standing Anatase TiO2 nanotube membranes for high efficiency dye‐sensitized solar cells. Adv Funct Mat 2013; 23: 5952. https://doi.org/10.1002/adfm.201301066
J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Baver, et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mat Sci 2007; 11: 3-18. https://doi.org/10.1016/j.cossms.2007.08.004
K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X.J. Feng, et al. Grimes, Is it effective to harvest visible light by decreasing the band gap of photocatalytic materials? J Phys Chem C 2009; 113: 6327. https://doi.org/10.1021/jp809385x
N.K. Allam, M.A. EI-Sayed. Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties. J Phys Chem C 2010; 112: 12687.
H.I. Hsiang, S.C. Lin. Effects of aging on the phase transformation and sintering properties of TiO2 gels. Mater Sci Eng A 2004; 380: 67-72. https://doi.org/10.1016/j.msea.2004.03.045
H.I. Hsiang, S.C. Lin. Effects of aging on nanocrystalline anatase-to-rutile phase transformation kinetics, Ceram. Ceram Int 2008; 34: 557-561. https://doi.org/10.1016/j.ceramint.2006.12.004
M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, et al. Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide. J Catal Today 2008; 131: 3- 14. https://doi.org/10.1016/j.cattod.2007.10.015
L. Kevan, B. O'Regan, A. Kay, M. Gratzel. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3. J Electroanal Chem 1993; 346: 291. https://doi.org/10.1016/0022-0728(93)85020-H
A. Sedghi, H.N. Miankushki. Influence of TiO2 electrode properties on performance of dye-sensitized solar cells. Int J Electrochem Sci 2012; 7: 12078.
M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, et al. Conversion of light to electricity by cisX2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) chargetransfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 1993; 115: 6382. https://doi.org/10.1021/ja00067a063
N.G. Park, G. Schlichthrl, J. van de Lagemaat, H.M. Cheong, A. Mascarenhas, A.J. Frank. Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. J Phys Chem B 1999; 103: 3308. https://doi.org/10.1021/jp984529i
S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L, et al. Control of dark current in photoelectrochemical (TiO2/II3) and dye-sensitized solar cells. Chem Commun 2005; 4351. https://doi.org/10.1039/b505718c
P.M. Sommeling, B.C. O'Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, et al. Influence of a TiCl4 posttreatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 2006; 110: 19191. https://doi.org/10.1021/jp061346k
B.C. O'Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker. Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C 2007; 111: 14001. https://doi.org/10.1021/jp073056p
C.T. Yip, C.S.K. Mak, A.B. Djurisic, Y.F. Hsu, W.K. Chan. Dye-sensitized solar cells based on TiO2 nanotube/porous layer mixed morphology. Appl Phys A 2008; 92: 589. https://doi.org/10.1007/s00339-008-4624-x
C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, et al. Nanocrystalline Titanium Oxide electrodes for photovoltaic applications. J Am Ceram Soc 1997; 80: 3157. https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
Khan SUM, M. Al-Shahry, W.B. Jr Ingler WB. Efficient photochemical water splitting by a chemically modified nTiO2. Science 2002; 297: 2243. https://doi.org/10.1126/science.1075035
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001; 293: 269. https://doi.org/10.1126/science.1061051
R.P. Vitiello, J.M. Macak, A. Ghicov, H. Tsuchiya, L.F.P. Dick, P. Schmuki. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem Commun 2006; 8: 544. https://doi.org/10.1016/j.elecom.2006.01.023
R. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett 2006; 6: 1080. https://doi.org/10.1021/nl0600979
A.L. Kontos, A.G. Kontos, Y.S. Raptis, P. Falaras. Nitrogen modified nanostructured titania: Electronic, structural and visible-light photocatalytic properties. Phys Status Solidi RRL 2008; 2: 83. https://doi.org/10.1002/pssr.200802006
T. Umebayashi, T. Yamaki, K. Asai. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 2002; 81: 454. https://doi.org/10.1063/1.1493647
T. Yamaki, T. Sumita, S. Yamamoto. Formation of TiO2−xFx compounds in fluorine-implanted TiO2. J Mat Sci Lett 2002; 21: 33. https://doi.org/10.1023/A:1014282225859
G.J. Ren, Y. Gao, X. Liu, A. Xing, H.T. Liu, J.G. Yin. Synthesis of high-activity F-doped TiO2 photocatalyst via a simple one-step hydrothermal process. React Kinet Mech Catal 2010; 100: 487. https://doi.org/10.1007/s11144-010-0194-y
N. Al-salim, S.A. Bagshaw, A. Bittar, T. Kemmitt, A.J. McQuillan, A.M. Mills, et al. Characterisation and activity of sol-gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives. J Mat Chem 2000; 10: 2358. https://doi.org/10.1039/b004384m
M. Kang. Synthesis of Fe/TiO2 photocatalyst with nanometer size by solvothermal method and the effect of H2O addition on structural stability and photodecomposition of methanol. J Mol Catal A 2003; 197: 173. https://doi.org/10.1016/S1381-1169(02)00586-1
K. Wilke, H.D. Breuer. The influence of transition metal doping on the physical and photocatalytic properties of titania. J Photochem Photobiol A 1999; 121: 49. https://doi.org/10.1016/S1010-6030(98)00452-3
J. Wang, S. Uma, K.J. Klabunde. Visible light photocatalysis in transition metal incorporated titania-silica aerogels. Appl Catal B Environ 2004; 48: 151. https://doi.org/10.1016/j.apcatb.2003.10.006
Y. Yang, X.J. Li, J.T. Chen, L.Y. Wang. Effect of doping mode on the photocatalytic activities of Mo/TiO2. J Photochem Photobiol A 2004; 163: 517. https://doi.org/10.1016/j.jphotochem.2004.02.008
A.W. Xu, Y. Gao, H.Q. Liu. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 Nanoparticles. J Catal 2002; 207: 151. https://doi.org/10.1006/jcat.2002.3539
F. Mohammadpour, M. Altomare, S. So, K. Lee, M. Mokhtar, A. Alshehri, P. Schmuki. High-temperature annealing of TiO2 nanotube membranes for efficient dye-sensitized solar cells. Semicond Sci Tech 2016; 31: 014010. https://doi.org/10.1088/0268-1242/31/1/014010
K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank. Enhanced charge-collection efficiencies and light scattering in dyesensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 2007; 7: 69. https://doi.org/10.1021/nl062000o
C. Richter, C.A. Schmuttenmaer. Schmuttenmaer, Excitonlike trap states limit electron mobility in TiO2 nanotubes. Nature Nanotech 2010; 5: 769. https://doi.org/10.1038/nnano.2010.196
J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker. Walker, Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J Am Chem Soc 2008; 10: 13364. https://doi.org/10.1021/ja804852z
P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010; 2: 45. https://doi.org/10.1039/B9NR00131J
J. Choi, S.H. Park, Y.S. Kwon, J. Lim, I.Y. Song, T. Park, Facile fabrication of aligned doubly open-ended TiO2 nanotubes, via a selective etching process, for use in frontilluminated dye sensitized solar cells (Communication). Chem. Commun 2012; 48: 8748. https://doi.org/10.1039/c2cc33629d
Y. Yu, K. Wu, K. She, D. Wang, D. Dye stability of dyesensitized solar cells with a conducting and a non-conducting electrode. Eur Phys J Appl Phys 2013; 61: 10201. https://doi.org/10.1051/epjap/2012120185
J. Martin, S.G. Hirsch, A. Giri, M.H. Griep, S.P. Karna, Nanotechnology (IEEE-NANO) (2012), 12th IEEE Conference.
Regonini, C.R. Bowen, A. Jaroenworaluck, R. Stevens. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mat Sci Eng R: Rep 2013; 74: 377. https://doi.org/10.1016/j.mser.2013.10.001
P. Roy, S. Berger, P. Schmuki. TiO2 nanotubes: Synthesis and applications. Angewandte Chemie - International Edition 2011; 50(13): 2904-2939. https://doi.org/10.1002/anie.201001374
G. Liu, K. Wang, N. Hoivik, H. Jakobsen. Progress on freestanding and flow-through TiO2 nanotube membranes. Solar Energy Materials and Solar Cells 2012; 98: 24. https://doi.org/10.1016/j.solmat.2011.11.004
S.M. Bhosle, R. Tewari, C.R. Friedrich. Dependence of nanotextured titanium orthopedic surfaces on electrolyte condition. J Surf Eng Mat Adv Tech 2016; 6: 164. https://doi.org/10.4236/jsemat.2016.64015
V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri. TiO2 nanotubes: Recent advances in synthesis and gas sensing properties. Sensors (Basel, Switzerland) 2013; 13(11): 14813-14838. https://doi.org/10.3390/s131114813
Y.J. Park, J.M. Ha, G. Ali, H.J. Kim, Y. Addad, S.O. Cho. Controlled fabrication of nanoporous oxide layers on zircaloy by anodization. Nanoscale Res Lett 2015; 10(1): 377. https://doi.org/10.1186/s11671-015-1086-x
Y. Li, H. Yu, C. Zhang, W. Song, G. Li, Z. Shao, B. Yi. Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrochim Acta 2013; 107: 313-319. https://doi.org/10.1016/j.electacta.2013.05.090
J. Macák. Growth of anodic self-organized titanium dioxide nanotube layers. 2008; 1-168. http://www.opus.ub. unierlangen.de/opus/volltexte/2008/935/
J.M. Macak, S.P. Albu, P. Schmuki. Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys Status Solidi RRL 2007; 1: 181-183. https://doi.org/10.1002/pssr.200701148
S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki. 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys Status Solidi RRL 2007; 1: 65-67. https://doi.org/10.1002/pssr.200600069
Q. Zhu, Y. Peng, L. Lin, C.M. Fan, G.Q. Gao, R.X. Wang, A.W Xu. Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J Mat Chem A 2014; 2: 4429. https://doi.org/10.1039/c3ta14484d
Z. Lockman, C.H. Kit, S. Sreekantan. Effect of annealing temperature on the Anatase and Rutile TiO2 nanotubes formation. J Nucl Tech 2009; 6(1): 57-64.
Y. Liu, X. Zhang. Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta 2009; 54(17): 4180- 4185. https://doi.org/10.1016/j.electacta.2009.02.060
A. Jaroenworaluck, D. Regonini, C.R. Bowen, R. Stevens. A microscopy study of the effect of heat treatment on the structure and properties of anodised TiO2 nanotubes. Appl Surf Sci 2010; 256(9): 2672-2679. https://doi.org/10.1016/j.apsusc.2009.09.078
S.P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki. TiO2 nanotubes–Annealing effects on detailed morphology and structure. Eur J Inorg Chem 2010; 27: 4351-4356. https://doi.org/10.1002/ejic.201000608
S. Leonardi, V. Russo, A. Li Bassi, F. Di Fonzo, T.M. Murray, H. Efstathiadis, J. Kunze-Liebhäuser. TiO2 nanotubes: Interdependence of substrate grain orientation and growth rate. ACS Appl Mat Inter 2015; 7(3): 1662-1668. https://doi.org/10.1021/am507181p