Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Hardness and Indentation Size Effect in Cubic Boron Nitride Materials (BL and BH Groups)

DOI
https://doi.org/10.31875/2410-4701.2024.11.13
Published
2024-12-31

Abstract

This paper investigates the hardness and indentation size effect (ISE) in cubic boron nitride (cBN) materials, specifically focusing on two groups: BL (below 70 vol.% cBN) and BH (more than 70 vol.% cBN). The study examines the load dependence of hardness in both groups, determining the load at which hardness becomes constant. Fracture toughness, (by the length of the crack) around indentations, is also evaluated for load dependence. The materials were synthesized using different additive combinations (Al, TiC, TiN, Mo) and sintered under high pressure and temperature. Hardness was measured using a Vickers indenter, and the ISE was analyzed using Meyer's law and the proportional sample resistance (PSR) model. Fracture toughness was calculated using the Niihara equation. Results show a significant ISE in BL materials, while BH materials exhibit less “load-hardness” dependence.

References

  1. Qian, J. Graphitization of diamond powders of different sizes at high pressure-high temperature / J. Qian, C. Pantea, J. Huang, T. W. Zerda, Y. Zhao // Carbon. – 2004. – V. 42. – P. 2691-2697. https://doi.org/10.1016/j.carbon.2004.06.017
  2. Yin, S. Microstructure and sintering mechanism of sintered cubic boron nitride materials / S. Yin, H. Y. Lai, X. C. Cheng // Chin. Ceram. Soc. – 1984. – V. 12 (4). – P. 450-455.
  3. Sobiyi, K., Sigalas. I, Akdogan, G. & Turan. Y. Performance of mixed ceramics and cBN tools during hard turning of martensitic stainless steel // International Journal of Advanced Manufacturing Technology. — 2015. — T. 77, Ne 5-8. — C. 861-871. https://doi.org/10.1007/s00170-014-6506-z
  4. Slipchenko, K., Turkevich, V., Petrusha, 1, Bushlya, V., Stahl, J.-E. Superhard peBN, materials with chromium compounds as a binder // Procedia Manufacturing. - 2018. - T. 25.-C. 329. https://doi.org/10.1016/j.promfg.2018.06.090
  5. Li Y, Li S, Lv R, et al. Study of high-pressure sintering behavior of cBN composites starting with cBN–Al mixtures // J Mater Res. 2008. T. 23. C. 2366-2372. https://doi.org/10.1557/jmr.2008.0316
  6. ISO16462: 2014; Cubic Boron Nitride Inserts, Tipped or Solid. Dimensions, Types. 2014. [Electronic resource] – Access mode: https://www.intechopen.com/online-first/significanceof-boron-nitride-in-composites-and-its-applications - (Accessed: 12.11.2024)
  7. Yu, L. High pressure sintering behavior and mechanical properties of cBN-Ti3Al and cBN-Ti3Al-Al composite materials / L. Yu, L. K. Zi, H. K. Wang, et al. // High Pressure Res. – 2012. –V. 32 (4). P. 524-531. https://doi.org/10.1080/08957959.2012.736507
  8. Zhang, L. L. cBN-Al-HfC composites: Sintering behaviors and mechanical properties under high pressure / L. L. Zhang, Z. Lv, F. Lin, et al. // Int. J. Refract. Met. H. – 2015, – V. 50. – P. 221-226. https://doi.org/10.1016/j.ijrmhm.2015.01.015
  9. Yang, Limin. Compositions, mechanical properties and microstructures of cBN-based composites sintered with Al or TiC / Limin Yang, Zhenming Yue, Jianhong Gong, Xiaodi Zhao, Xingrong Chu // Structural, Functional and Bioceramics. – 2017. – V. 116. – 2017. P. 254-259. https://doi.org/10.1080/17436753.2017.1290330
  10. Zhang L, Lin F, Lv Z, et al. cBN–Al–HfC composites: sintering behaviors and mechanical properties under high pressure. Int J Refract Met Hard Mat. – 2015. – V. 50. P. 221-226. https://doi.org/10.1016/j.ijrmhm.2015.01.015
  11. Barry J, Byrne G. Cutting tool wear in the machining of hardened steels: part II: cubic boron nitride cutting tool wear. Wear. – 2001. – V. 247. P. 152–160. https://doi.org/10.1016/S0043-1648(00)00528-7
  12. Chiou S, Ou S, Jang Y, et al. Research on cBN/TiC composites. Part1: effects of the cBN content and sintering process on the hardness and transverse rupture strength. Ceram Int. – 2013. – V. 39. P. 7205-7210. https://doi.org/10.1016/j.ceramint.2013.02.066
  13. Turkevych D.V., Bushlya V., Stahl J.E., et al. HPHT sintering, microstructure, and properties of B6O- and TiC-containing composites based on cBN. J Superhard Mater. – 2015. – V. 37. P. 143-154. https://doi.org/10.3103/S1063457615030016
  14. S. J. Bull, T. F. Page, E. H. Yoffe. An explanation of the indentation size effect in ceramics // Philosophical Magazine Letters. 1989. V. 59, I. 6. P. 281 – 288. https://doi.org/10.1080/09500838908206356
  15. Niihara K. Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios / K. Niihara, R. Morena, D.P.H. Hasselman // Journal of Materials Scince. V. 1. 1982. P. 13-16. https://doi.org/10.1007/BF00724706
  16. Lawn B.R. Equilibrium penny-like cracks in indentation fracture / B.R. Lawn, E.R. Fuller // Journal of Materials Science. V. 10 (12). 1975. P. 2016-2024. https://doi.org/10.1007/BF00557479
  17. Tanaka K., Elastic/plastic indentation hardness and indentation fracture toughness: the inclusion core model // Journal of Materials Science. V. 22, I. 4. 1987. P. 1501-1508. https://doi.org/10.1007/BF01233154
  18. Klimczyk P. Cubic boron nitride based composites for cutting applications / P. Figiel, I. Petrusha, A. Olszyna // Journal of Achievements in Materials and Manufacturing Engineering. V. 44. 2011. P. 198-204
  19. Karsten Durst, Björn Backes, Oliver Franke, Mathias Göken. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations // Acta Materialia. V. 54. I. 9. 2006. P. 2547-2555.https://doi.org/10.1016/j.actamat.2006.01.036
  20. J. Andrejovska, J. Dusza: Hardness and Indentation Load/Size Effect in Silicon based Ceramics // in Proc. of the NANOCON. Rožnov pod Radhoštem, Chech Republic. 2009.
  21. Bückle, I., H. Process in Micro-Indentation Hardness Testing // Metall. Rev. 1959. V. 4. P. 49-100. https://doi.org/10.1179/095066059790421746
  22. Mason, W., Johnson, P. F., Varner, J., R. Importance of Load Cell Sensitivity in Determination of the Load Dependence of Hardness in Recording Microhardness Tests // J. Mater. Sci. 1991. V. 26. P. 6576-6580. https://doi.org/10.1007/BF00553680
  23. Tarkanian, M., L., Neumann, J., P., Raymond, L. In The Science of Harndness Testing and Its Research Applications // ed. J. H.Westbrook and H. Conrad. American Society for Metals. Metal Park. OH. 1973.
  24. Li, H., Bradt, R., C. // J. Mat. Sci. 1996. V. 31. P. 1065-1070. https://doi.org/10.1007/BF00352908
  25. Tabor, D. The hardness of Metals // Oxford University Press. Oxford. UK. 1951.
  26. Li, H., Bradt, R. C. // J. Mater. Sci. 1993. V. 28. P. 917-926. https://doi.org/10.1007/BF00400874
  27. Gong, J., Wu, J., Guan, Z. Examination of the indentation size effect in low-load vickers hardness testing of ceramics // J. Eur. Ceram. Soc. 1999. V. 19, I. 15. P. 2625-2631. https://doi.org/10.1016/S0955-2219(99)00043-6
  28. Berriche, R., Holt, R. T. Effect of load on the hardness of tot isostatically pressed silicon nitride // J. Am. Cearm. Soc. 1993. V. 76, I. 6. P. 1602-1604. https://doi.org/10.1111/j.1151-2916.1993.tb03946.x