Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Magnetocaloric Effect in La0.7Sr0.3Mn0.95Ni0.05O3 Manganite Via Mean Field Theory

DOI
https://doi.org/10.31875/2410-4701.2025.12.02
Submitted
June 20, 2025
Published
2025-06-19

Abstract

This study investigates the magnetocaloric effect of La0.7Sr0.3Mn0.95Ni0.05O3 manganite, with a primary focus on leveraging the mean-field theory as a powerful tool for analysis. By applying this theoretical framework, alongside the Law of Approach to Saturation (LAS), key parameters such as saturation magnetization (Mo), total angular momentum (J), gyromagnetic factor (g) , and exchange parameter (λ)  were determined. The mean-field theory proved essential for simulating the isothermal magnetization M (H,T) and the magnetic entropy change -∆SM (T)curves, providing a comprehensive understanding of the material’s magnetocaloric behavior. Despite its simplifications, the mean-field approach serves as a crucial starting point for modeling complex magnetic systems and offers valuable insights into the material’s thermodynamic properties.

References

  1. Zhou C, Li R. Gd3TeBO9: a rare-earth borate with significant magnetocaloric effect. Chem. Eur. J. 2024; 30: e202303048. https://doi.org/10.1002/chem.202303048
  2. Siroux M. Magnetocaloric refrigeration. In: Refrigerators, Heat Pumps and Reverse Cycle Engines. John Wiley & Sons, Ltd; 2023: 171-207. https://doi.org/10.1002/9781394228881.ch5
  3. Elouafi A, Ouahbi SE, Ezairi S, Lassri M, Tizliouine A, Lassri H. Near room temperature magnetocaloric effect of Cr-ₓRuₓO2 (x = 0.000, 0.125, and 0.250) for magnetic refrigeration. Eur. Phys. J. Plus. 2023; 138: 22. https://doi.org/10.1140/epjp/s13360-022-03646-y
  4. Ayaş AO, Çetin SK, Akça G, Akyol M, Ekicibil A. Magnetic refrigeration: current progress in magnetocaloric properties of perovskite manganite materials. Mater. Today Commun. 2023; 35: 105988. https://doi.org/10.1016/j.mtcomm.2023.105988
  5. Verma S, Ravi S. Investigation of magnetocaloric effect in holmium substituted dysprosium iron garnet for magnetic refrigeration applications. J. Magn. Magn. Mater. 2024; 589: 171512. https://doi.org/10.1016/j.jmmm.2023.171512
  6. Bayzi Isfahani V, Coondoo I, Bdikin I, Skokov K, Ricardo da Silva Gomes J, Baptista RMF et al. Flexible magnetocaloric fiber mats for room-temperature energy applications. ACS Appl. Mater. Interfaces. 2024; 16: 8655-8667. https://doi.org/10.1021/acsami.3c15833
  7. Beckmann B, Pfeuffer L, Lill J, Eggert B, Koch D, Lavina B et al. Multicaloric cryocooling using heavy rare-earth free La(Fe,Si)13- based compounds. ACS Appl. Mater. Interfaces. 2024. https://doi.org/10.1021/acsami.4c05397
  8. Regeciová L, Farkašovský P. Quantum design of magnetic structures with enhanced magnetocaloric properties. J. Phys. D: Appl. Phys. 2024; 57: 455301. https://doi.org/10.1088/1361-6463/ad5e8f
  9. Ghorai S, Vieira RM, Shtender V, Delczeg-Czirjak EK, Herper HC, Björkman T et al. Giant magnetocaloric effect in the (Mn,Fe)NiSi-system. 2023. https://doi.org/10.1103/PhysRevMaterials.8.124401
  10. Masche M, Liang J, Engelbrecht K, Bahl CRH. Efficient modulation of the magnetocaloric refrigerator capacity. Int. J. Refrig. 2023; 145: 59-67. https://doi.org/10.1016/j.ijrefrig.2022.10.005
  11. Biswas B, Biswas D, Debnath M, Bose E, Pal S. Giant magnetocaloric effect and second order phase transition in PrMnO3. J. Magn. Magn. Mater. 2023; 588: 171445. https://doi.org/10.1016/j.jmmm.2023.171445
  12. Zhao J, Gao L, Zhao J-J, Wei W, Yun H-Q, Xing R et al. Magnetocaloric effect and phase transition critical behavior of La0.75Sr0.25Mn0.9Co0.1O3 compound synthesized under high pressure. Tungsten. 2024; 6: 621-632. https://doi.org/10.1007/s42864-023-00247-9
  13. Arejdal M. Magnetocaloric effect and critical exponents at near room temperature of CrTe. Solid State Commun. 2024; 390: 115612. https://doi.org/10.1016/j.ssc.2024.115612
  14. Kumar S, Muhammad R, Kim S, Yi J, Son K, Oh H. Exploring magnetocaloric materials for sustainable refrigeration near hydrogen gas liquefaction temperature. Adv. Funct. Mater. 2024; 2402513. https://doi.org/10.1002/adfm.202402513
  15. Mellari S. Introduction to magnetic refrigeration: magnetocaloric materials. Int. J. Air-Cond. Ref. 2023; 31: 5. https://doi.org/10.1007/s44189-023-00021-z
  16. Datta S, Dheke SS, Panda SK, Rout SN, Das T, Kar M. Magnetocaloric effect in large temperature window on off-stoichiometric Ni-Mn-Ga-based Heusler alloys. J. Alloys Compd. 2023; 968: 172251. https://doi.org/10.1016/j.jallcom.2023.172251
  17. Jiang X, Zou Z, He B, Zhang W, Mao Z. Large magnetocaloric effect of Sm³+-doped La0.7Sr0.3-ₓSmₓMn0.95Ni0.05O3 (x = 0, 0.05, 0.10, 0.15) manganites near room temperature. J. Electron. Mater. 2023; 52: 4587-4602. https://doi.org/10.1007/s11664-023-10395-w
  18. Waske A, Dutta B, Teichert N, Weise B, Shayanfar N, Becker A et al. Coupling phenomena in magnetocaloric materials. Energy Technol. 2018; 6: 1429-1447. https://doi.org/10.1002/ente.201800163
  19. Sokolovskiy VV, Miroshkina ON, Buchelnikov VD. Review of modern theoretical approaches for study of magnetocaloric materials. Phys. Met. Metallogr. 2022; 123: 319-374. https://doi.org/10.1134/S0031918X22040111
  20. Zverev V, Tishin AM. Magnetocaloric effect: from theory to practice. Reference Module in Materials Science and Material Engineering; Elsevier: Amsterdam, The Netherlands; 2016: 5035-5041. https://doi.org/10.1016/B978-0-12-803581-8.02813-7
  21. de Oliveira NA, von Ranke PJ. Theoretical aspects of the magnetocaloric effect. Phys. Rep. 2010; 489: 89-159. https://doi.org/10.1016/j.physrep.2009.12.006
  22. Devi EC, Soibam I. Magnetic properties and law of approach to saturation in Mn-Ni mixed nanoferrites. J. Alloys Compd. 2019; 772: 920-924. https://doi.org/10.1016/j.jallcom.2018.09.160
  23. Chatterjee BK, Ghosh CK, Chattopadhyay KK. Temperature dependence of magnetization and anisotropy in uniaxial NiFe2O4 nanomagnets: deviation from the Callen–Callen power law. J. Appl. Phys. 2014; 116: 153904. https://doi.org/10.1063/1.4898089
  24. Bhowmik RN, Aneeshkumar KS. Low temperature ferromagnetic properties, magnetic field induced spin order and random spin freezing effect in Ni1.5Fe1.5O4 ferrite; prepared at different pH values and annealing temperatures. J. Magn. Magn. Mater. 2018; 460: 177-187. https://doi.org/10.1016/j.jmmm.2018.04.001
  25. Amaral JS, Tavares PB, Reis MS, Araújo JP, Mendonça TM, Amaral VS et al. The effect of chemical distribution on the magnetocaloric effect: a case study in second-order phase transition manganites. J. Non-Cryst. Solids. 2008; 354: 5301-5303. https://doi.org/10.1016/j.jnoncrysol.2008.05.078