Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Development of Polymeric Matrix Composite to Replace Grey Cast Iron in Precision CNC Machinery Structures

DOI
https://doi.org/10.31875/2410-4701.2025.12.05
Submitted
August 15, 2025
Published
2025-08-24

Abstract

The structure of CNC machines must withstand the machining loads and have adequate rigidity to ensure the dimensional accuracy of the product. Gray cast iron is the material normally used in the bases of these machines because it has a relatively low cost, is easy to manufacture, has high compressive strength, and has a high vibration damping capacity. The objective of this work was to develop a rock particle reinforced polymer matrix composite with mechanical properties suitable for the design of precision CNC machining machine structures. Different resin and rock types were analyzed and 3 limestone particulate reinforced composites with 13%, 16% and 23% by weight of epoxy matrix phase were developed, and determinate their mechanical properties through compression tests ABNT NBR 5739/2018 standard. With the obtained values, tests were performed in a finite element software to evaluate the use of the material in the structure of the aircraft aircraft wing CNC machine. The results showed that the best mechanical properties were observed in the composite samples containing 16% epoxy, which by FEM test showed an increase in structural stiffness and a 25% reduction in the maximum deformation resulting from the application of machining loads.

References

  1. Norton, Robert L. Projeto de máquinas: Uma abordagem integrada. Trad: Konstantinos Dimitriou Stavropoulos et al. 4. ed. Porto Alegre: Bookman, 2013. 1028 p.
  2. P.H. Joshi. Machine tools handbook. Tata McGraw-Hill Education, New Delhi, 2000.
  3. R.L. Stoeterau. Introdução ao Projeto de Máquina-Ferramentas Moderno. Departamento de Engenharia Mecânica. Florianópolis: Universidade Federal de Santa Catarina, 2004.
  4. Koenigsberger, Franz; TLUSTY, Jiri. Machine tool structures. Rio de Janeiro: Elsevier, 2016.
  5. Y. Altintas. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge, 2012. https://doi.org/10.1017/CBO9780511843723
  6. Mozetic H.; Fonseca E.; Schneider, E. L.; Schaeffer L. The use of magnetic field annealing on nodular cast iron for speaker cores. International Journal of Applied Electromagnetics and Mechanics, v. 37, p. 51-65, 2011. https://doi.org/10.3233/JAE-2011-1395
  7. W.D. Callister. Materials science and engineering: an introduction. New York, John Wiley & Sons, 1997.
  8. Schneider, E.L.; Hamerski, F.; Veit, H.M.; Krummenauer, A.; Cenci, M.P.; Chaves, R.A.; Hartmann, W.L.; Dias, M.M.; Robinson L.C.; Vargas A.S. Evaluation of Mass Loss in Different Stages of Printed Circuit Boards Recycling Employed in Temperature Controllers. Materials Research-Ibero-american Journal of Materials, v. 22, p. 1-7, 2019. https://doi.org/10.1590/1980-5373-mr-2018-0833
  9. Kerche, E. F.; Schneider, E.L.; Grassi, G.D.; Robinson, L.C.; Furlanetto, A.; Da Luz, S.M. Manufacturing and characterization of recycled SBR-based composites for surfboard decks. Journal of Rubber Research, v. 25, p. 375-382, 2022. https://doi.org/10.1007/s42464-022-00172-5
  10. Silveira, V.S.; de Vargas, A.S.; Hansen, É.; Robinson, L.C.; Thoen, N.A.; de Quevedo, D.M.; Schneider, E.L.; de Aquim, P.M. Novel solidification/stabilization process of wet blue leather waste to produce recycled lightweight aggregates. Waste and Biomass Valorization, v. 14, p. 377-387, 2023. https://doi.org/10.1007/s12649-022-01869-9
  11. Diacenco, A.A. Modelagem por elementos finitos de materiais compósitos estruturais incorporando material viscoelástico para o controle passivo de vibração e ruído. 2010. 81f. Dissertação (Mestrado em Materiais para Engenharia) - Universidade Federal de Itajubá, Itajubá, MG, 2010. Disponível em: < https://saturno.unifei.edu.br/bim/0036327.pdf> Acesso em: 03 fev. 2018.
  12. Moura, M.F.; Morais, A.M.B.; Magalhães, A.G. Materiais compósitos: materiais, fabrico e comportamento mecânico. 2.ed. Porto Alegre: Publindustria, 2011.
  13. F. Levy Neto, L.C. Pardini. Compósitos estruturais: ciência e tecnologia. São Paulo: Edgard Blucher, 2006. 313 p.
  14. N. Kepczak, W. Pawlowski. Application of Mineral Casting for Machine Tools Beds. Mechanics And Mechanical Engineering, Lódz, Poland, v. 17, n. 4, p.285-289, 2013.
  15. R.M.L. Mendonça, A. Pirateli Filho, F. Levy Neto. Compósitos Particulados para Aplicações em Engenharia de Precisão: obtenção e propriedades mecânicas. In: 2 Congresso Brasileiro de Engenharia de Fabricação, 2003, Uberlândia. Anais, 2003. P. 18-21.
  16. Fajdek-Bieda, A.; Wróblewska, A. The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects. Polymers 2024, 16, 2505. https://doi.org/10.3390/polym16172505
  17. Krzywinski, Kamil & Sadowski, Lukasz & Piechówka-Mielnik, Magdalena. (2021). Engineering of composite materials made of epoxy resins modified with recycled fine aggregate. Science and Engineering of Composite Materials. 28. 276-284. 10.1515/secm-2021-0029. https://doi.org/10.1515/secm-2021-0029
  18. Tecnodrill Industria de Máquinas LTDA, www.tecnodrill.com, Brazil.
  19. M. Bauccio. ASM Metals Reference Book, Third edition, Ed. ASM International, Materials Park, OH, 1993.

Most read articles by the same author(s)