Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Synthesis and Characterization of LaCu0.25Mn0.75O3-δ Nanoparticles Perovskite Materials

DOI
https://doi.org/10.31875/2410-4701.2019.06.10
Submitted
October 31, 2019
Published
2019-10-31

Abstract

A spongy black powder of LaCu0.25Mn0.75O3-δ was synthesized by a modified Pechini method in this study. Properties of LaCu0.25Mn0.75O3-δ perovskite were investigated via in situ Fourier transform infrared (FTIR) spectroscopy. X-ray diffraction results indicated obtaining highly crystalline LaCu0.25Mn0.75O3-δ sample with crystallite size was 37 nm. FTIR results confirmed the formation of LaCu0.25Mn0.75O3-δnanoparticles. High-Resolution Transmission Electronic Microscope HRTEM image illustrates that the prepared sample is in the nanoscale with d-spacing equal to 0.13 nm matching the [440] plane of cubic LaCu0.25Mn0.75O3-δ.The optical properties of the obtained samples were investigated and indicated that the prepared sample is in the nanoscale.

References

  1. Zhu Y, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching. Adv Mater 2006; 18(5): 587-592.https://doi.org/10.1002/adma.200501918
  2. Pena MA, Fierro JLG. Chemical structures and performance of perovskite oxides. Chem Rev 2001; 101(7): 1981-2018.https://doi.org/10.1021/cr980129f
  3. Spinicci R, Delmastro A, Ronchetti S, Tofanari A. Catalytic behaviour of stoichiometric and non-stoichiometric LaMnO3 perovskite towards methane combustion. Mater Chem Phys2003; 78(2): 393-399.https://doi.org/10.1016/S0254-0584(02)00218-3
  4. Alonso JA, et al. Non-stoichiometry, structural defects and properties of LaMnO 3+ δ with high δ values (0.11≤δ≤ 0.29). J Mater Chem 1997; 7(10): 2139-2144.https://doi.org/10.1039/a704088a
  5. Dezanneau G, Sin A, Roussel H, Audier M, Vincent H. Magnetic properties related to structure and complete composition analyses of nanocrystalline La1− xMn1− yO3 powders. J Solid State Chem 2003; 173(1): 216-226.https://doi.org/10.1016/S0022-4596(03)00027-6
  6. Vincent H, Audier M, Pignard S, Dezanneau G, Senateur JP. Crystal Structure Transformations of a Magnetoresistive La0. 8MnO3–δ Thin Film. J Solid State Chem 164(2): 2002; 177-187.https://doi.org/10.1006/jssc.2001.9440
  7. Bouderbala A, et al. Structural, magnetic and magnetocaloric study of La0. 7− xEuxSr0. 3MnO3 (x= 0.1, 0.2 and 0.3) manganites. Ceram Int 2015; 41(6): 7337-7344.https://doi.org/10.1016/j.ceramint.2015.02.034
  8. Yang J, et al. Structural, transport, and magnetic properties in the Ti-doped manganites LaMn1− xTixO3 (0≤ x≤ 0.2). Solid State Commun 2005; 136(5): 268-272.https://doi.org/10.1016/j.ssc.2005.08.005
  9. Bejar M, Sdiri N, Hussein M, Mazen S, Dhahri E. Magnetocaloric effect on strontium vacancies in polycrystalline La0. 7Sr0. 3− x□ xMnO3. J Magn Magn Mater2007; 316(2): e566-e568.https://doi.org/10.1016/j.jmmm.2007.03.022
  10. Triki M, Dhahri E, Hlil EK. Unconventional critical magnetic behavior in the Griffiths ferromagnet La0. 4Ca0. 6MnO2. 8□0.2 oxide. J Solid State Chem 2013; 201: 63-67.https://doi.org/10.1016/j.jssc.2013.02.019
  11. Sdiri N, Bejar M, Hussein M, Mazen S, Dhahri E. Effect of the oxygen deficiency in physical properties of La0. 7Ca0. 25Sr0. 05MnO3−δ□δ oxides (0⩽δ⩽ 0.15). J Magn Magn Mater2007; 316(2): e703-e706.https://doi.org/10.1016/j.jmmm.2007.03.066
  12. Pérez-Flores JC, et al. A-and B-site Ordering in the A-Cation-Deficient Perovskite Series La2–x NiTiO6−δ (0≤ x< 0.20) and Evaluation as Potential Cathodes for Solid Oxide Fuel Cells. Chem Mater 2013; 25(12): 2484-2494.https://doi.org/10.1021/cm4008014
  13. Andreson MT, Greenwood KB, Taylor GA, Poppelmeier KR. “B-cation arrangements in double perovskite. Progr Solid State Chem 1993; 22: 197-233.https://doi.org/10.1016/0079-6786(93)90004-B
  14. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. in Kolloidchemie Ein Lehrbuch, Springer 1912; pp. 387-409.https://doi.org/10.1007/978-3-662-33915-2_7
  15. Zhang W, et al. A redox reaction to synthesize nanocrystalline Cu2-x Se in aqueous solution. Inorg Chem2000; 39(9): 1838-1839.https://doi.org/10.1021/ic990871d
  16. Anwar S, Pattanaik M, Mishra BK, Anwar S. Effect of deposition time on lead selenide thermoelectric thin films prepared by chemical bath deposition technique. Mater Sci Semicond Process 2015; 34: 45-51.https://doi.org/10.1016/j.mssp.2015.02.014
  17. Begum A, Hussain A, Rahman A. Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J Nanotechnol 2012; 3(1): 438-443.https://doi.org/10.3762/bjnano.3.50
  18. Ruiz-González ML, Cortés-Gil R, Alonso JM, Hernando A, Vallet-Regí M, González-Calbet JM. Structural ordering and ferromagnetism in La4Mn4O11. Chem Mater 2006; 18(24): 5756-5763.https://doi.org/10.1021/cm0609193
  19. Pankove JI. Optical processes in semiconductors Prentice-Hall. New Jersey 1971; vol. 92.