Black Cool Pigments for Urban Heat Island (UHI) Control: from Cr-Hematite to Mn-Melilite

G. Monrós*, S. Cerro, J.A. Badenes and M. Llusar

Dpt. Of Inorganic and Organic Chemistry, Jaume I University, 12070 Castelló, Spain

Abstract: Black cool pigments are very interesting for its application in asphalt urban pavements and building floors for moderate the urban heat island effect (UHI) and improving air conditioning energy efficiency. Cool black pigments based on Cr doped hematite Fe₃O₄ (trigonal, R-3c), hexagonal perovskites YMnO₃ (hexagonal, P6₃cm) and Sr₃CuMn₂O₈ (trigonal, P321) and melilite Sr₂(Mg₃Mn₉O₁₉)Ge₆O₁₇ (tetragonal, P-42m) with high NIR reflectance synthesized by ceramic and coprecipitation method, are analyzed and compared from color yield in alkyl paint, ceramic glazes and porcelain stoneware, NIR reflectance, bandgap and photocatalytic activity on Orange II substrate. Sr₃CuMn₂O₈ black powders show the nearest hue h to the reference carbon black and the highest NIR reflectance (51%). All pigments show high NIR reflectance in all tested applications. The Fe₀.₁Cr₀.₈O₃ pigment shows good behavior in the free ZnO glaze and also in porcelain stoneware, YMnO₃ and Sr₃CuMn₂O₈ pigments are compatible with low temperature glazes, but Sr₂(Mg₃Mn₉O₁₉)Ge₆O₁₇ pigment loses the black color even in low temperature glazes. Sr₃CuMn₂O₈ pigment shows moderate photoactivity on Orange II (t₁/₂=216 min) and the Fe₁.2Cr₀.8O₃ pigment also shows some activity (t₁/₂=329 min).

Keywords: Black pigment, Cool pigment, Urban heat island, Photocatalysis, Glazes.

1. INTRODUCTION

Buildings are responsible of about the 36% of primary energy consumption and 30% of greenhouse gas emissions in U.S. Therefore, strategies such as Leadership in Energy and Environmental Design (LEED) certification, promoted by the U.S. Green Building Council, analyze the sustainability of buildings considering factors associated with their design and construction such as the content of recycled material in their composition, the use of regional raw materials for their manufacture, innovation and design (functionality) and the urban heat island effect (UHI). Regarding the urban heat island effect, the determination of the Solar Reflectance Index (SRI) for opaque materials (wall, roof and floor) aids the LEED certification. SRI reveals the ability of a surface to reflect solar radiation and to emit thermal radiation, reducing the increase in temperature caused by the incidence of solar radiation on the surface. The SRI of a specific surface changes with the solar reflectance R and thermal emittance of the material, and also according to certain environmental conditions, such as the solar flux, the convection coefficient, the air temperature and the sky temperature (ASTM E1980 2011). In the case of roof tiles for buildings, the SRI value required for a specific material is dependent on the slope of the roof (SRI≥39 for steep slope; SRI≥82 for low slope) [1].

The so-called eco-friendly cool pigments are being studied in recent years can be defined as a pigment with high coloring capacity in matrices such as paints, glass, ceramics, similar to a conventional one (and therefore with similar reflectance in the visible spectrum), but with high reflectance in the near infrared (NIR 750-2500 nm); so it reflects this radiation moderating the heating of the surface. Figure 1 shows the behavior of a conventional carbon black pigment compared to the Cr-hematite black pigment reported in this paper (A pigment) [1, 2].

Figure 1: Thermal behavior of the carbon black pigment and the black Cr-hematite (A pigment) (10 wt% added to alkyl paint) [1, 2].

The wooden plate closes the open ceiling of a 20x20x20 cm cement cube colored in white. When irradiated by the infrared lamp, the equilibrium temperature after several hours of irradiation indicates...
that inside the cabin closed with the wood colored with the Cr-hematite black pigment it is 32.3°C compared to 37.6°C in the cabin closed with the wood colored with carbon black. The reason for this behavior is described in Figure 2, which shows the reflectance spectra of both surfaces.

![Figure 2: Reflectance spectra of the carbon black and black (A) Cr-hematite pigments 10 wt% added to alkyd paint applied over wood surface [1, 2].](image)

The spectrum of the carbon black surface has a low reflectance R throughout the spectrum; in the visible area (300-750 nm). On the other hand, black plate has low reflectance in the visible range, but from 750 nm in the infrared range, it reflects around 36% of the radiation so that it heats up much less than carbon black that reflects practically nothing. In addition to the cooling effect on buildings, if they are used intensively, the use of cooling pigments has a global impact on terrestrial albedo and therefore on climate change, as described in Figure 3 [3, 4].

The snowy landscapes in Figure 3 show a reflectance to sunlight higher than 80%. This type of landscape gradually disappears in time and space due to the effect of climate change (e.g., polar caps regression). In forested areas the reflectivity, tempered by the humidity of the chlorophyll mass of the forest remains relatively high (> 37%). However in deforested, anthropized and desertified areas, the reflectivity is always less than 5% using conventional asphalt. The effect of climate change and anthropization induces changes in the landscape towards the surfaces of R = 2, retreating the reflective forested and snowy areas, with which the warming worsens in a cyclical way. The reversal or moderation of the cycle can be achieved, among other methods, by increasing the global reflectance using, for example, highly reflectance pigments in roads and insolated surfaces.

![Figure 3: Reflectance R(%) of a surface; albedo effect and climate change [3, 4].](image)

When using reflective surfaces that produce cooling of the surfaces, the normal and intuitive question about energy efficiency always appears: "if these pigments are used, it is clear that in summer we will save on air conditioning but, what happens in winter? Will we spend more on heating? The answer is that, in fact, in winter in periods of insolation a small portion of energy is lost by reflection, but the period of winter light is half that in summer and in temperate climates the period and energy of solar irradiation (W/m²) are much lower and more the colder the climate, without forgetting that in cold climates the surfaces are stained white by frost and snow, so that our insolated pigments in snowy environments cool much less than the surface bleached by snow. In short, a rigorous life cycle analysis applied to any type of climate, from the hottest to the coldest, indicates that the use of highly reflective surfaces is always efficient [4], with efficiency much more evident in hot and temperate climates.

Following the Dry Color Manufacturers Association, pigment powders are classified in three categories [5, 6]:

- Category A deals with pigments suspended in glass matrixes which require the highest degree of heat stability and chemical resistance to withstand the attack of molten glass.
- **Category B** deals with pigments suspended in plastics and other polymers, which require only moderate heat stability.

- **Category C** deals with pigments suspended in liquid vehicles, which require little, or no heat stability.

In order to achieve cool pigments, several factors should be considered: (a) Absence of absorbent species in the NIR range (700-2500 nm); e.g. Co$^{2+}$ in tetrahedral environment shows a strong absorbance in the 1200-1600 nm (due to the coupling of d-d transitions bands $^{4}A_{2}(F)\rightarrow^{4}T_{1}(F)$ at 1400 nm and $^{4}A_{2}(F)\rightarrow^{4}T_{2}(F)$ at 1600 nm) which hinders its application as NIR reflector but there is no simple alternative for blue color in glazes [7]. In this sense, a good NIR reflector is a semiconductor with relatively high band gap such as TiO$_{2}$ (2.4 eV) or CdS, ZnO and SrTiO$_{3}$ (3.4 eV), with an intense charge transfer band located at UV range that block the UV radiation and protect the organic binders, (b) High thermal emittance. Thermal emittance is the measure of a material ability to release heat that it has absorbed and therefore its temperature is moderated [8]. The emittance index of solids is high (e.g. ceramics 0.9, asphalt 0.88) except in the case of conductive metals (e.g. Ag 0.02, Al 0.03, Cu 0.04) [1].

Obviously, a pigment should have high pigmenting yield when dispersed in the matrices (polymers, glass, ceramics...). For achieve high pigmenting capacity two factors are critical: (a) High refractive index that allows achieving high scattering efficiency of light when the pigment is added to a matrix with very different refractive index. The scattering efficiency increases with the difference of the refractive index pigment-medium. The polymorphs of TiO$_{2}$ anatase and rutile show high refractive index (2.55 and 2.73 respectively), then pigments based on rutile lattice such as ocher of Cr-Sb rutile or yellow of Ni-Sb rutile are two of the best classical cool pigments. Related pigments such as Cr-pseudobrookite (Cr-Fe$_{2}$TiO$_{3}$) [9], Cr-armaclolite (Cr-(MgFe$_{2}$Ti$_{3}$O$_{8}$ [10] or Ni-geikielite (Ni-MgTiO$_{3}$) [11] based on titanates also show high NIR reflectance, (b) Particle size should be about half the wavelength of the light, hence for NIR light (700-2500 nm) the particle diameter should be between 350-1250 nm. But it is important to note that a fine pigment with lower particle size shows higher surface area and number of particles, which probably compensates the low scattering of dissimilar size, and therefore it can show higher NIR reflectance. The particle shape and packing status are other important factors, in addition to the particle size. However, it is important to note that in ceramic applications the particle size must reach a minimum value that resist the attack of the media: fine particles are solved by the glazes or ceramic stoneware [1].

Several of the published cool pigments are only evaluated in powder form and, sometimes, their lightness is outside Munsell's optimal chroma, resulting in pale colors [12-14]. Black cool pigments are very interesting for its application in asphalt urban pavements and building floors for moderate the urban heat island effect (UHI) and improving air conditioning energy efficiency. Cool black pigments based on Cr doped hematite Fe$_{2}$O$_{3}$ (trigonal, R-3c), hexagonal perovskites YMnO$_{3}$ (hexagonal, P6$_{3}$cm) and Sr$_{4}$CuMn$_{2}$O$_{8}$ (trigonal, P321) and melilite Sr$_{4}$Mg$_{2}$Mn$_{0.5}$Ge$_{2}$O$_{7}$ (tetragonal, P-42; m) with high NIR reflectance synthesized by ceramic and ammonia coprecipitation method, are analyzed and compared from color yield in ceramic glazes and ceramic stoneware, NIR reflectance, bandgap and photocatalytic activity on Orange II substrate.

2. EXPERIMENTAL

2.1. Samples Preparation

The classic black reference pigment is the carbon black based on graphite, but as described in Figure 2 its NIR reflectance is negligible. According to Akbary and Levinson [2] the classical black pigments with high NIR reflectance (measured in films of the order of 11-30 µm thick in PVC applications) are the inorganic black of Cr-hematite solid solution and also the organic Perylene black pigment that absorbs strongly in the visible and very weakly in the NIR (but unusable in ceramic matrices and its nature as PAH could induce negative environmental effects). The black cool pigments prepared based on systems previously described in the literature [1] are the following.

(A) Classical Cr doped hematite Fe$_{2}$O$_{3}$ (trigonal, R-3c) solid solution pigment in the optimal composition Fe$_{1.2}$Cr$_{0.8}$O$_{3}$ employed in photocatalysis [15]. This pigment shows tendency to produce brown hues in glazes due to entrance of Zn$^{2+}$, Mg$^{2+}$ or Al$^{3+}$ from the glazes into pigment lattice [16, 17]; instead it show a good behavior in porcelain stoneware applications. Its high NIR reflectance and the rise in price and toxic characteristics of cobalt-based black pigments has increased the interests in this pigment [1, 16-18]. A commercial pigment supplied by ELCOM SL is used as cool black reference (see Figure 17).
(B) YMnO$_3$ (hexagonal, $P6_3$cm) hexagonal perovskite. Rare earth distorted perovskite RMnO$_3$ (R = Y, La) are attracting considerable theoretical and technological interest by virtue of their unusual magnetic and electronic properties ('colossal' magnetoresistance in LaMnO$_3$) [19] or as heat reflecting blue pigments for energy-saving coatings (exceptionally high NIR reflectance in In doped YMnO$_3$) [20]. YMnO$_3$ crystallizes in acentric space group $P6_3$cm with Mn$^{3+}$ in trigonal-bipyramidal coordination and γ^347 fold coordinated; the unit cell contracts 66% with temperature to a $P6_3/mmc$ form where γ^347 shows octahedral coordination [21].

(C) Sr$_x$CuMn$_2$O$_9$ (trigonal, $P321$) hexagonal perovskite. The structure and the electric and magnetic properties of disordered hexagonal perovskite-type oxides A_xMO_3 (A=Sr, M=Co,Ni) have received much attention [22, 23]. The structures of these oxides can be viewed in terms of infinite (MO_3) and A chains, where the (MO_3) chains are made up of face-sharing MO_6 octahedra and trigonal prisms. In the (MO_3) chains, single MO_6 trigonal prisms may alternate with single MO_6 octahedra or with M_xO_{3n+3} octahedral oligomers made up of n face-sharing MO_6 octahedra. Crystals of $Sr_xMn_2CuO_9$ belong to the family of $A_{1-x}(A'B_{1.5})O_3$ $(0.5 \leq x \leq 0.75)$, which is closely related to the hexagonal perovskite 2H structure having a $P321$ space group. The Mn$^{4+}$ ions occupy the octahedral site and Cu$^{2+}$ ions randomly fill the center of the square faces of the trigonal prisms. Mn$^{4+}$ ion can have spin-exchange interactions with adjacent Mn$^{4+}$ ions and also with adjacent Cu$^{2+}$ located at the TP centers. Thus, a number of different local spin arrangements are possible in Sr$_{4/3}$Mn$_{2/3}$Cu$_{1/3}$O$_3$ disordered hexagonal perovskite-type which has been studied as orange cool pigments doped with Zn$^{2+}$ (Sr$_4$Mn$_2$(Cu$_2$Zn$_{1/2}$)O$_3$) [24].

(D) Melilite Sr_2(Mg$_{0.5}$Mn$_{0.5}$)Ge$_2$O$_7$ (tetragonal, $P4_2/m$). Melilite-type compounds with a general formula $Sr_2MGe_2O_7$ (M=Mg, Zn, Co, Mn) consist of M^{4+} and Ge$^{4+}$ ions which occupy two kinds of tetrahedral sites in an ordered manner in tetrahedral coordination without excess oxygen. The M ions form a square-planar lattice in the ab plane [25]. As the content of Mn in the Sr_2(Mg$_{1-z}$Mn$_z$)Ge$_2$O$_7$ solid solutions was increased, the color changed from white to sky blue, deep blue, and finally black body color. Sr_2Mn$_2$Ge$_2$O$_7$ has the melilite-type structure comprising MnO$_2$ and GeO$_2$ tetrahedra. Kim et al. [26] found that Mn ion in Sr_2(Mg$_{1-z}$Mn$_z$)Ge$_2$O$_7$ solid solutions is mainly trivalent and that the additional oxygen atom infiltrates into the lattice to compensate for the excess positive charge. The additional oxygen atom occupies an interstitial site, leading to the formation of the rarely Mn$^{3+}$O$_5$ trigonal bipyramid and Ge$^{4+}$O$_5$ square pyramid. As the driving force for the Mn$^{3+}$O$_5$ formation, the tendency for improving the lattice coherency between BO$_4$–B’O$_4$ and AO$_5$ layers in the melilite $A_2BB'2O_7$ is suggested [26].

Precursors, supplied by ALDRICH, with a particle size between 0.3-5 μm were mechanically homogenized in an electric grinder (20000 rpm) during 5 min and the mixture fired at the corresponding temperature and soaking time: 1200°C/3h (pigment A), 1250°C/6h (pigment B), 1000°C/12h (pigment C) and 1250°C/6h (pigment D). In the case of Sr$_x$CuMn$_2$O$_9$ hexagonal perovskite (C pigment) a coprecipitation method CO was also carried out in order to check the effect of non-conventional methods. In this CO method, nitrates of the corresponding ions ($Sr$$(NO_3)_2$, $Cu$$(NO_3)_2$) $3/2$ H_2O and Mn(NO$_3$)$_2$. 4H_2$O are solved in water and then ammonia was added drop by drop until gelation occurs. The gel was dried at 110°C and finally fired at 1000°C/6h.

2.2. Samples Characterization

X-Ray Diffraction (XRD) was carried out on a Siemens D5000 diffractometer using Cu K_{α} radiation (10-70 $^\circ$26 range, scan rate 0.02 $^\circ$/s, 4 s per step and 40 kV and 20 mA conditions).

$L^*a^*b^*$ and C^*h^* color parameters of glazed samples were measured following the CIE-L*a*b* (Commission Internationale de l’Eclairage) colorimetric method [27] using a X-Rite SP60 spectrometer, with standard light D65 and 10° observer. On this method, L^* is a measure of lightness (100=white, 0=black) and a^* and b^* of color parameters ($a^*=$green, $+a^*=red$, $b^*=$blue, $+b^*=$yellow). The values of C^* and h^* and the tolerance ΔE^* based can be estimated from L^*, a^* and b^* parameters by the equations 1-3 respectively:

$$C^* = (a^2 + b^2)^{1/2}$$ (eq. 1)

$$h^* = \arctan(b^*/a^*)$$ (eq. 2)

$$\Delta E^* = \sqrt{\Delta L^2 + \Delta a^2 + \Delta b^2}$$ (eq. 3)

ISO 12642-25 (referred to graphic technology to characterize 4-color printing process) considers unacceptable a difference $\Delta E^*$$>5$. Instead, the International Standard ISO 10545-16 for ceramic tiles establishes a limit of $\Delta E^*$$<0.75$ in part 16, concerning the determination of small color differences between plain
colored ceramic tiles, which are designed to be of uniform and consistent color.

UV-Vis-NIR spectra of fired powder samples and also of the applications of the pigments samples were collected using a Jasco V670 spectrometer through diffuse reflectance technique, which gives data in absorbance using arbitrary units (A) or in reflectance units (R(%)). Band gap energy of semiconductors was calculated by Tauc plot [28] using the UV-Vis-NIR spectra of Kubelka-Munk model [29]. The optical reflectance spectra were scanned in the range of 350 to 2500 nm for optimized pigments. The total solar reflectance R, the solar reflectance in the NIR range R\textsubscript{NIR}, or the solar reflectance in the Vis range are evaluated from UV-Vis-NIR spectra through diffuse reflectance technique as the integral of the measured spectral reflectance and the solar irradiance divided by the integral of the solar irradiance in the range of 350 to 2500 nm for R, 700 to 2500 nm for R\textsubscript{NIR} or 350-700 nm for R\textsubscript{Vis} as in the equation 4:

\[R = \frac{\int_{2500}^{500} \frac{r(\lambda)l(\lambda)d\lambda}{i(\lambda)d\lambda}}{\int_{350}^{2500} i(\lambda)d\lambda} \]

(eq. 4)

Where, (\lambda) is the spectral reflectance (Wm-2) measured from UV-Vis-NIR spectroscopy and i(\lambda) is the standard solar irradiation (Wm-2nm-1) according to the American Society for Testing and Materials(ASTM) Standard G173-03.

Microstructure characterization of powders was carried out by Scanning Electron Microscopy (SEM) using a JEOL 7001F electron microscope (following conventional preparation and imaging techniques). The chemical composition and homogeneity of the samples was determined by semi-quantitative elemental analysis with an EDX (Energy Dispersive X-Ray Spectroscopy) analyzer (supplied by Oxford University) attached to the microscope. EDX is a suitable technique for routine quantitative analysis of elements heavier than sodium, present in 10 wt% or greater in the sample and occupying few cubic micrometers of the specimen at least. Trace elements present in <1.0 wt% can be analyzed but with lower precision compared with analyses of elements present in greater concentration [30]

The photoactivity of the samples has been evaluated by the degradation of the azo dye Orange II (OII) in aqueous solutions. The photocatalytic tests were carried out adding a catalyst loading of 0.5 g/l to an OII solution of 0.6 \texttimes 10-4 mol/l, which has been prepared dissolving an amount of Orange II (C\textsubscript{16}H\textsubscript{11}N\textsubscript{2}NaO\textsubscript{4}S) in a pH 7.42 phosphate buffer media (NaH\textsubscript{2}PO\textsubscript{4}, H\textsubscript{2}O 3.31 g and Na\textsubscript{2}HPO\textsubscript{4}, 7H\textsubscript{2}O 33.77 g solved in 1 liter of water). The UV irradiation source was a mercury lamp of 125 W emitting in the range 254-365 nm. Before measuring, the suspensions were first stirred in the dark during 15 min to reach sorption/desorption equilibrium. The evolution of reaction was followed taking samples every 15 min. Orange II concentrations in the different sample were determined by means of UV-Vis spectroscopy at 485 nm. The commercial TiO\textsubscript{2} Degussa P25 was used as reference of comparison with the home prepared samples; likewise a CONTROL test without photocatalyst addition is also carried out.

Photocatalytic degradation has been followed according to the Langmuir-Hinshelwood model of heterogeneous catalysis that considers the reaction between two species adsorbed on the catalyst (adsorbates) versus the so-called Eley-Rideal model that postulates the reaction between an adsorbate and an incoming molecule [31]. In the Langmuir-Hinshelwood model at low adsorption and also at low concentration, the degradation turns out to be a pseudo first order kinetics according to the equation 5:

\[\frac{dc}{dt} = Kk c \]

(eq. 5)

Where k is the light intensity dependent rate constant, K is the adsorption constant and c is the concentration of degraded compound in the media. Integrating between the initial conditions t = 0, c = c\textsubscript{o} and at time t:

\[ln\frac{c}{c_0} = Kkt \]

(eq. 6)

As the light absorption A at 485 nm by the Orange II is directly proportional to its concentration c; the representation of lnA/A\textsubscript{o} against t is a line that passes through the origin and slope Kk. Therefore the photodegradation half-life period t\textsubscript{1/2} or the time required to degrade to half the substrate content is done by equation 7:

\[t_{1/2} = \frac{ln2}{Kk} \]

(eq.7)

2.3. Application of Pigments

The coloring capacity of the pigments was studied in 10 wt% in colorless alkyd paint (Table 1 and Figure 1-2) with a good performance in all cases (L* decreases and R\textsubscript{NIR} increases in alkyd matrix (Table 1)), and specially in ceramic applications: 3wt%
applications of black cool pigments (A,B,C and D) added in two kind of glazes (double firing glaze at 1000°C and single firing glaze at 1080°C) and 2wt% added to porcelain stoneware powder. The technical characteristics of the glazes are described below.

Cool pigments should present high values of R and R\textsubscript{NIR} along with high stability and coloring capacity in its applications, showing high chroma C* (except for black hues which tends to zero) and lightness L* should be enclosed within the range of Munsell’s high chromaticity for the different hues: e.g. high for yellow (80-90), cyan (75-85) and green (70-80), middle for magenta (50-60) and red (45-55) and low for blue (25-35) and black (35-0) hues [32]. Authors have associated the high reflectance or SRI (Solar Reflectance Index) with the lightness L* or Y factor. For instance, L.M. Schabbacha et al. analyzed the thermal and optical properties related to solar reflectance index in pigmented glazed ceramic roof tiles in Brazil [33]: the results show that most of the colored glazed tiles did not meet the 2013 LEED requirement, that is, SRI≥39 for roof tiles with a steep slope. A polynomial relationship between the Y factor (or L*) and the SRI (or R) was found (R^2 value > 0.95), and thus the tile colors would probably not qualify for SRI certification.

3. RESULTS AND DISCUSSION

3.1. Black Cool Powder Pigments (A,B,C, D)

Figure 4 shows the powders image and the corresponding XRD pattern of the black cool pigments

Table 1: Black Cool Pigments Based on Systems Previously Described in the Literature (A,B,C and D): Reference Powder of Commercial Carbon Black (L^*a*b*=20.2/0.1/0.1 (powder) 21.6/0.1/0.1 (10 wt% in Alkyd Paint), R\textsubscript{Vis}/R\textsubscript{NIR}/R= 3/3/3, C*=0.14, h=45 (red)

<table>
<thead>
<tr>
<th>POWDER</th>
<th>(A) Fe\textsubscript{1.2}Cr\textsubscript{0.8}O\textsubscript{3} 1200/3h</th>
<th>(B) YMnO\textsubscript{3} 1250/6h</th>
<th>(C) Sr\textsubscript{4}CuMn\textsubscript{2}O\textsubscript{9} 1000/12h</th>
<th>(D) Sr\textsubscript{2}(Mg\textsubscript{0.5}Mn\textsubscript{0.5})Ge\textsubscript{2}O\textsubscript{7} 1250/6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^ab*</td>
<td>42.3/-0.3/0.6</td>
<td>27.7/-1.2/-3.5</td>
<td>43.9/7.2/6.3</td>
<td>31.8/-0.1/-8.3</td>
</tr>
<tr>
<td>ΔE*</td>
<td>22.1</td>
<td>3.6</td>
<td>25.5</td>
<td>14.3</td>
</tr>
<tr>
<td>C*</td>
<td>0.7</td>
<td>3.7</td>
<td>9.6</td>
<td>8.3</td>
</tr>
<tr>
<td>h (color region)</td>
<td>116.6 (green)</td>
<td>199 (green-blue)</td>
<td>41.2 (red)</td>
<td>269 (blue)</td>
</tr>
<tr>
<td>R\textsubscript{Vis}/R\textsubscript{NIR}/R</td>
<td>4/23/14</td>
<td>3/39/19</td>
<td>7/51/29</td>
<td>5/32/17</td>
</tr>
<tr>
<td>E\textsubscript{g}(eV)</td>
<td>1.13</td>
<td>1.36</td>
<td>1.38</td>
<td>1.24</td>
</tr>
<tr>
<td>10wt% ALKYD PAINT</td>
<td>L^ab*</td>
<td>39/1.3/0.5</td>
<td>26.2/-2/-4.1</td>
<td>41.2/8.6/6.8</td>
</tr>
<tr>
<td>R\textsubscript{Vis}/R\textsubscript{NIR}/R</td>
<td>4/36/21</td>
<td>3/42/23</td>
<td>7/55/30</td>
<td>5/35/19</td>
</tr>
</tbody>
</table>

Figure 4: Black cool pigments based on systems previously described in the literature (A,B,C,D) [17, 19, 24, 26]: reference commercial carbon black (L^*a*b*=20.2/0.1/0.1, R\textsubscript{Vis}/R\textsubscript{NIR}/R= 3/3/3, C*=0.14, h=45 (red).
powders based on systems previously described in the literature (A,B,C,D) and Table 1 summarizes its color characterization, reflectance and bandgap measurements using as reference a commercial carbon black (L*a*b*=20.2/0,1/0,1, R
\text{Vis}/R
\text{NIR}/R= 3/3/3, C*=0.14, h=45 (red)).

The XRD patterns show the crystallization of the corresponding single crystalline phase in each pigment: hematite Fe₂O₃ (trigonal, R-3c) in (A) Fe₁₂Cr₀.₈O₃, Y₂MnO₃ distorted perovskite (hexagonal, P6₃cm) in (B), Sr₂CuMn₂O₉ hexagonal perovskite (trigonal, P₃2₁) in (C), and melilitite Sr₂MgGe₂O₇ (tetragonal, P-42,m) in (D) Sr₂(Mg₀.₅Mn₀.₅)Ge₂O₇ pigment.

The L*a*b* color results in Table 1 represented in Figure 5 show that lightness L* is enclosed within the above described range of MunseIl's high chromaticity for (A) Fe₁₂Cr₀.₈O₃ (L*=27.7) and (D) Sr₂(MgMn)Ge₂O₇ (L*=31.8) but (B) Y₂MnO₃ and (C) Sr₂CuMn₂O₉ pigments are not enclosed showing L* around 43. On the other hand (B) Y₂MnO₃ is the nearest black color to the carbon black reference with ∆E*=3.7, followed by (D) Sr₂(MgMn)Ge₂O₇ (∆E*=14.3), (A) Fe₁₂Cr₀.₈O₃ (∆E*=22.1) and (C) Sr₂CuMn₂O₉ (∆E*=25.5). The nearest chroma C* parameter to the carbon black reference is for A (C*=0.7), the sample B (C*=3.7) show a low relative value also, the samples D and C with higher values tend to blue (b*= --8.3) in the case of germanate D and to green-yellow for C sample. Finally, only the sample C shows a hue similar to reference (h=41.2 (red region)), the hue of A and B tend to green region and D to blue. The Cr-hematite commercial black pigment supplied by Elcom S.L. shows ∆E*=21.3 and C*=0.6 very close to its homologous composition A, however the hue h=91 (orange-green) is different (Figure 17).

The reflectance data in Table 1 and Figure 4 show that R
\text{NIR} decreases in the sequence C (51%), B(39%), D (32%) and finally A(23%). Therefore the pigment (C) Sr₂CuMn₂O₉ shows the nearest hue h to the reference carbon black but with very high NIR reflectance. However the pigment (B) Y₂MnO₃ shows the lower color tolerance ∆E* from the reference and the (A) Fe₁₂Cr₀.₈O₃ pigment shows the minimum L* and chroma of the serie (best black chroma).

Figure 6 shows the UV-Vis-NIR reflectance spectra of black cool pigments of the series A,B,C,D and the reference, showing the sequence in the R
\text{NIR} above described. The spectra give interesting data about the valence of the ions, their coordination and the mechanism of color in the system [1].

For (A) Fe₁₂Cr₀.₈O₃ pigment the diffuse reflectance spectrum of Fe₁₂Cr₀.₈O₃ is integrated by broad bands at 450 nm, 680 nm and 940 nm (minimums of reflectance in Figure 6A). Usually this pigment is considered a substitutional solid solution with a corundum-type crystalline network. The Fe³⁺ and Cr³⁺ cations occupy two-thirds of the octahedral vacancies in the compact hexagonal network formed by the oxygen anions, and are randomly distributed according to their proportion in the mixture.

Figure 7 shows the UV-Vis-NIR diffuse reflectance spectra of the (A) Fe₁₂Cr₀.₈O₃ black cool pigment and its precursors: hematite (Fe₂O₃) and eskolaite (Cr₂O₃). Cr³⁺ (d³) in octahedral coordination in eskolaite lattice shows a cation-anion charge transfer band at 250 nm (not shown) and two intense, parity-forbidden and spin-allowed transitions: ⁴A₂g(4F) → ⁴T₁g(4F) at 600 nm and ⁴A₂g(4F) → ⁴T₁g(4F) at 420 nm, and furthermore tiny bands at 700 and 920 nm associated to doubly forbidden transition to ²T₁g(2G) and ²E₂g(2G) respectively [34]. On the other hand, Fe³⁺ (d⁵) in octahedral coordination in hematite lattice shows an intense charge transfer band at 290-310 nm (not shown), spin forbidden transitions from the ground state ⁶A₁(6S) to ⁴E and ⁴A (4G) at 400 nm and Fe³⁺ spin forbidden transitions from the ground state ⁶A₁ to
the excited states 4T_2 and 4T_1, whose configuration is $(t_{2g})^4(e_g)^1$ at 650 and 900 nm respectively [35].

Figure 6: UV-Vis-NIR reflectance spectra of black cool pigments based on systems previously described in the literature [17, 19, 24, 26]: A,B,C,D and the series compared with carbon black reference.

The bands for the (A) Fe$_{1.2}$Cr$_{0.8}$O$_3$ pigment in Figure 7 are consistent with the solid solution eskolaite-hematite by overlapping of Cr$^{3+}$ (d3) and Fe$^{3+}$ (d5) absorptions in octahedral environments: the band observed at 450 nm results from the overlapping of Cr$^{3+}$ ($^4A_{2g}(4F) \rightarrow ^4T_{1g}(4F)$) and Fe$^{3+}$ ($^6A_1(6S)$ to 4E and 4A (4G)), and the detected at 680 nm from Cr$^{3+}$ ($^4A_{2g}(4F) \rightarrow ^4T_{2g}(4F)$) and Fe$^{3+}$ (6A_1 to the excited states 4T_2), finally the band at 940 nm is the result of the overlapping of Cr$^{3+}$ ($^4A_{2g}(4F) \rightarrow ^2E_g(2G)$) and Fe$^{3+}$ (6A_1 to the excited states 4T_1). Therefore a crystal field mechanism (CFM) of the chromophore ions Cr$^{3+}$ (d3) and Fe$^{3+}$ (d5) in corundum structure is associated to this pigment in agreement with literature [13, 14].

For (B) YMnO$_3$ pigment, the diffuse reflectance spectrum of YMnO$_3$ is integrated by broad bands at 420 nm, 640 nm and 860 nm (Figure 6B): a crystal field

Figure 7: UV-Vis-NIR diffuse reflectance spectra of (A) Fe$_{1.2}$Cr$_{0.8}$O$_3$ black cool pigment and its precursors hematite (Fe$_2$O$_3$) and eskolaite (Cr$_2$O$_3$).
mechanism (CFM) explain the black color of YMnO₃ associated to the D₃h trigonal bipyramid allowed transition between the valence-band maximum, composed of Mn 3d(x²−y², z²) states strongly hybridized with O 2p(x,y) states, and the narrow Mn 3dₓ²−y²-based conduction-band minimum of Mn³⁺(3d⁴) ion with a double band at 640 and 860 nm and the charge transfer band O₂p(x,y) → Mn 3dₓ²−y² at 420 nm [20].

In the case of (C) Sr₃CuMn₂O₆ pigment, the minimum of the broad reflectance bands is detected at 400, 540 and 730 nm (Figure 6C). Mn⁴⁺(d³) in octahedral coordination shows in agreement with Tanabe Sugano diagrams [36] a parity-forbidden and spin-allowed transitions ⁴A₂g(4F) → ⁴T₂g(4F) and ⁴A₂g(4F) → ⁴T₁g(4F) compatible with the observed bands at 540 and 400 nm respectively in C pigment; furthermore tiny bands associated to doubly forbidden transition to ⁵T₁g(2G) (compatible with the position of band at 730 nm but not with its high intensity) and to ⁵E₁g(2G) (not detected) respectively. On the other hand Cu²⁺ shows an outer electron configuration 3d⁸ and may be formally be treated as a 3d¹ within the electron-hole formalism. In this case Cu²⁺ ions randomly fill the center of the square faces of the trigonal prisms showing square-plane coordination which in the Egyptian Blue pigment [37,38] shows weak d–d transitions of copper (despite symmetry very close to D₃h of copper coordination) due to vibronic coupling: with bands at 800 nm associated with (²B₁g→²B₂g), at 650 nm with (²B₁g→²E₁g) and at 540 nm with (²B₁g→²A₁g). Therefore the overlapping absorption bands described for Mn⁴⁺ (d³) in octahedral coordination and Cu²⁺ ions in square-plane coordination can explain the positions of the bands reflectance spectra of (C) Sr₃CuMn₂O₆ pigment in Figure 6C, however it is not able to justify its anomalously high optical density, therefore spin-exchange interactions of Mn⁴⁺ ions with adjacent Mn⁴⁺ ions and also with adjacent Cu²⁺ located at the TP centers should be considered for explain the high intensity of absorption in the visible region by a Paired spin exchange transitions (PET) [1].

For (D) Mellilite Sr₂(Mg₀.₅Mn₀.₅)Ge₂O₇ pigment, only a broad band extended from 500 to 800 nm is detected (Figure 6D). Considering a simple replacement of Mg²⁺ by Mn³⁺(d⁵) in tetrahedral environment; parity-forbidden and spin-allowed transitions ⁴A₂g(4F) → ⁴T₂g(4F) at around 600 nm and ⁴A₂g(4F) → ⁴T₁g(4F) at about 400 nm, and also tiny bands at 700-1000 nm associated to doubly forbidden transition to ⁵T₁g(2G) and ⁵E₁g(2G) respectively, are predicted in agreement with Tanabe Sugano diagrams, that are not compatible with Figure 3. Mg²⁺ (Shannon-Prewit radius 0.71 Å in tetrahedral coordination) can be replaced by the similarly sized Mn³⁺(d⁵) ion (Shannon-Prewit radius 0.72 Å in fivefold coordination and in octahedral low spin,; there are not data for tetrahedral environment [39]), but for the preservation of lattice electroneutrality, vacancies of Mg²⁺ (or Mn³⁺) or addition of oxygen atoms infiltrated in the lattice should be considered. According to Tanabe Sugano diagram Mn³⁺(d⁵) in tetrahedral coordination shows a band due to ⁵T₂g → ⁵E₂g transition compatible with Figure 3D [36]. As above discussed, Kim et al. [26] found that Mn ion is mainly trivalent, showing Mn⁵⁺O₅ trigonal bipyramid (and Ge⁴⁺O₅ square pyramid) and additional oxygen atoms occupies an interstitial site, leading to the formation of Sr₂(Mg₁₋ₓMnₓ)Ge₂O₇₅ solid solutions. Probably a intervalence charge transfer mechanism Mn³⁺- Mn²⁺ is involved to produce the color (IVCTM) [1].

Figure 8 shows the Kubelka Munk absorption spectra of representative pigments. An ideal black NIR reflective pigment would show Rₕ=0 (from Vis range 380—750 nm) and Rₙ=100 (from NIR range 700-2500 nm); therefore its inflection point of the diffuse

Figure 8: Kubelka Munk absorption spectra of (B) YMnO₃ and (D) Mellilite Sr₂(Mg₀.₅Mn₀.₅)Ge₂O₇ pigments.
reflectance spectrum should be at ~750 nm (1.65 eV).

E_g data measured from Kubelka Munk absorption spectra using the Tauc et al. method [28] for the black pigments in Table 1 are into the range 1.38 eV (900 nm) for (C) $\text{Sr}_4\text{CuMn}_2\text{O}_9$ (the nearest to ideal bandgap), 1.36 eV (910 nm) for (B) YMnO$_3$, 1.24 eV (1000 nm) for (D) $\text{Sr}_2(\text{MgMn})\text{Ge}_2\text{O}_7$ and 1.13 eV (1100 nm) for (A) $\text{Fe}_{1.2}\text{Cr}_{0.8}\text{O}_3$; the same progression that for R_{NIR} values of 51, 39, 32 and 23% respectively.

Figure 9 shows SEM micrographs of black cool pigments A, B, C, D. (A) $\text{Fe}_{1.2}\text{Cr}_{0.8}\text{O}_3$ pigment shows the best faceted crystallization of rhombohedral crystals with a particle size of 2-6 µm. (B) YMnO$_3$ pigment shows fine particles of 1 µm which form aggregates of 2-6 µm of size. (C) $\text{Sr}_4\text{CuMn}_2\text{O}_9$ and (D) $\text{Sr}_2(\text{Mg}_{0.5}\text{Mn}_{0.5})\text{Ge}_2\text{O}_7$ pigments show similar and very fine (0.5-1 µm) particles. The compositional analysis by EDX mapping of the samples shows a homogeneous distribution of the ions in the particles (Figure 10).

3.2. Application in Glazes of the Black Cool Pigments (A,B,C,D)

Table 2 shows the SEM micrograph and chemical composition (obtained by EDX analysis) of the used glazes and porcelain stoneware powders and also in alkyd paint (based on alkyd resins or organic polyesters such as the derived from phthalic anhydride

![Figure 9: SEM micrographs of black cool pigments A,B,C, D.](image1)

![Figure 10: Analysis by EDX mapping of (B) YMnO$_3$ and (C) $\text{Sr}_4\text{CuMn}_2\text{O}_9$ powder pigments.](image2)
and glycerol). Figure 11 shows the thermal firing cycle used with employed glazes and porcelain stoneware.

Table 2: SEM Micrograph and Chemical Composition (Obtained by EDX Analysis in wt%) of the Used Glazes and Porcelain Stoneware Powder

<table>
<thead>
<tr>
<th></th>
<th>Double Firing (1000°C)</th>
<th>Single Firing (1080°C)</th>
<th>Porcelain Stoneware (1190°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>75</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>K₂O</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>CaO</td>
<td>2</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>ZnO</td>
<td>-</td>
<td>7.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10</td>
<td>8.5</td>
<td>9</td>
</tr>
<tr>
<td>PbO</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure 11: Thermal firing cycle used with glazes and Porcelain Stoneware employed.

Table 3 and Figure 12 summarize the results of the characterization of the 3wt% applications of black cool pigments (A,B,C,D) added in two kind of glazes (double firing glaze at 1000°C and single firing glaze at 1080°C) and 2wt% added to porcelain stoneware powder (manually homogenized in a mortar and pressed into pellets at 150 kg/cm² and fired at 1200°C), using as black reference the powder of commercial carbon black (L*a*b*=20.2/0.1/0.1, R_visible/R_NIR/R_infrared = 3/3/3, C*=0.14, h=45 (red).

(A) Fe₁.₂Cr₀.₈O₃ pigment shows a black and stable performance in the low temperature glaze (ZnO free, Table 2, Figure 12); however, it is brown in the high temperature glaze (with ZnO, Table 2) associated to the reaction and crystallization of brown Zn(Fe,Cr,Al)₂O₄ spinels as it is well known in the literature [16], furthermore in 2wt% added to porcelain stoneware powder, the pigment shows a stable black behavior (L*a*b*=40.0/3.3/5) in agreement with literature [1,16,17]. The reflectance R_NIR is relatively high in the black low temperature glaze (17%) and show high values in the brown high temperature glaze (43%) and especially in the black porcelain stoneware pellets (49%).

Figure 13 compares the UV-Vis-NIR reflectance spectra of the black (A) Fe₁.₂Cr₀.₈O₃ powder and the brown 3wt% double firing glazed sample. Absorption bands (reflectance minimums) are detected in glazed sample at 500, 670 nm in the visible range that have its corresponding bands in the powder spectrum, but the absorption intensity decreases (reflectance increases) for the 670 nm and the black shade is lost and sample appears brown. Likewise a NIR band at 860 is detected that shifts to low wavelength respect the powder (940 nm) and an additional intense NIR band at 1150 nm is detected in this glazed sample but also in the black single firing glazed sample and in the black porcelain...
stoneware sample (Figure 12) but with lower intensity in this case allowing an higher NIR reflectance.

(B) YMnO₃ pigment shows a black and stable performance in the low temperature glaze (ZnO free) but some pin hole, probably associated to the decomposition of the compound to colorless Mn²⁺ that dissolves in the glaze releasing oxygen is detected (Figure 12). Considering oxides:

\[2\text{YMnO}_3 \rightarrow \text{Y}_2\text{O}_3 + 2\text{MnO}_2 + \frac{1}{2} \text{O}_2 \]

In effect, manganese with III and IV valence has been traditionally employed (usually in the form of manganese dioxide) as the sometimes colloquially known as “glassmakers’ soap” as key ingredient in the making of reasonably colorless glass. The use of this compound as decolorizer in glassmaking has been known since at least 1290 associated with its oxidizing action on Fe²⁺ (that induces a greenish color to the glassy mass) to the colorless Fe³⁺, reducing the Mn (IV) or Mn (III) to the colorless Mn²⁺ [40,41]. In the most aggressive conditions of single firing glaze at 1080°C the decomposition rate increases and a profuse pin hole with loss of black shade is observed (Figure 12). In the case of porcelain stoneware at 1200°C, the decomposition is complete and the sample becomes colorless.

Table 3: Applications of Black Cool Pigments (A,B,C and D) 3% Added in the Indicated Glazes: Reference Powder of Commercial Carbon Black (L*a*b*=20.2/0.1/0.1, R₁₃₀/R₉₄₀/R= 3/3/3, C*=0.14, h=45 (red))

<table>
<thead>
<tr>
<th></th>
<th>(A) Fe₁.₂Cr₀.₈O₃ 1200/3h</th>
<th>(B) YMnO₃ 1250/6h</th>
<th>(C) Sr₄CuMn₂O₉ 1000/12h</th>
<th>(D) Sr₂(Mg₀.₅Mn₀.₅)Ge₂O₇ 1250/6h</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 wt% Double Firing (1000°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab*</td>
<td>34.1/2.6/-3.7</td>
<td>31.9/1.6/1.1</td>
<td>57.9/2.8/0.2</td>
<td>49.6/12.8/13.7</td>
</tr>
<tr>
<td>ΔE*</td>
<td>14.6</td>
<td>11.9</td>
<td>37.8</td>
<td>35</td>
</tr>
<tr>
<td>C*</td>
<td>4.5</td>
<td>2.5</td>
<td>2.8</td>
<td>18.7</td>
</tr>
<tr>
<td>h (color region)</td>
<td>125.1 (orange)</td>
<td>50.0 (red)</td>
<td>184.0 (green-blue)</td>
<td>47.0 (red)</td>
</tr>
<tr>
<td>R₁₃₀/R₉₄₀/R</td>
<td>4/17/10</td>
<td>7/31/18</td>
<td>25/41/33</td>
<td>25/68/44</td>
</tr>
<tr>
<td>Eᵢ(eV)</td>
<td>1.51</td>
<td>1.36</td>
<td>1.00</td>
<td>1.51</td>
</tr>
<tr>
<td>3 wt% Single Firing (1080°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab*</td>
<td>34.1/11.6/4.0</td>
<td>59.3/2.4/1.4</td>
<td>55.2/3.4/3.7</td>
<td>74.8/4.8/1.3 colorless</td>
</tr>
<tr>
<td>ΔE*</td>
<td>18.5</td>
<td>39.2</td>
<td>35.3</td>
<td>54.0</td>
</tr>
<tr>
<td>C*</td>
<td>12.3</td>
<td>2.8</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>h (color region)</td>
<td>19.0 (violet)</td>
<td>30.3 (red)</td>
<td>47.4 (red)</td>
<td>15.2 (violet)</td>
</tr>
<tr>
<td>R₁₃₀/R₉₄₀/R</td>
<td>6/43/24</td>
<td>28/53/39</td>
<td>21/37/29</td>
<td>56/73/64</td>
</tr>
<tr>
<td>Eᵢ(eV)</td>
<td>1.43</td>
<td>1.36</td>
<td>1.08</td>
<td>1.55</td>
</tr>
<tr>
<td>2 wt% Porcelain Ston (1200°C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab*</td>
<td>40.9/3.3/5</td>
<td>colorless</td>
<td>colorless</td>
<td>colorless</td>
</tr>
<tr>
<td>ΔE*</td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C*</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h (color region)</td>
<td>46.7 (red)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁₃₀/R₉₄₀/R</td>
<td>8/49/28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eᵢ(eV)</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 14 shows a comparison of UV-Vis-NIR reflectance spectra of (B) YMnO₃ pigment and its 3 wt% application in the single firing glaze (1000°C). The two spectra are very similar indicating the stabilization of the chromophore agents and then the YMnO₃ crystalline phase in the glassy matrix. Only a shoulder at 1200 nm appear in glazed sample that decreases
the reflectance in the 1000-1500 nm range, involving a slight decrease in R_{NIR} (39% for powder and 31% for glazed sample) which can be associated to the partial dissolution of Mn$^{2+}$ in the glassy matrix and the microbubbles of oxygen released and trapped into glass.

(C) Sr$_4$CuMn$_2$O$_9$ shows a similar behavior to (B) YMnO$_3$ pigment, associated with the reduction of Mn$^{4+}$ in this case, however the decomposition is less strong in the single firing glaze which presents pin holes but it maintains the black shade (Figure 12).

Figure 13 compares the UV-Vis-NIR reflectance spectra of (A) Fe$_{1.2}$Cr$_{0.8}$O$_3$ pigment and its 3 wt% application in the double firing glaze (1000°C).

Figure 14: Comparison of UV-Vis-NIR reflectance spectra of (B) YMnO$_3$ pigment and its 3 wt% application in the single firing glaze (1000°C).

(reduced to Mn$^{2+}$ incorporated to glassy matrix) can be associated to the loss of absorption at 400 nm.

Figure 15 compares the UV-Vis-NIR reflectance spectra of (C) Sr$_4$CuMn$_2$O$_9$ pigment and its 3 wt% application in the single firing glaze (1000°C).

The decrease of Mn$^{4+}$ in the system
(D) Sr$_2$(Mg$_{0.5}$Mn$_{0.5}$)Ge$_2$O$_7$ glazed application exhibits unstable behavior similar to B and C pigment, associated to reduction of Mn$^{3+}$ in this case, but the decomposition is strong in both glazes and although the pin hole is moderate, the double firing glazed sample is brown and the single firing one is colorless like the porcelain stoneware sample (not shown) (Figure 12).

Indeed, for ceramic applications (A) Fe$_{1.2}$Cr$_{0.8}$O$_3$ pigment shows good behavior in free ZnO glazes and also in porcelain stoneware, (B) YMnO$_3$ and (C) Sr$_4$CuMn$_2$O$_9$ black pigments can be compatible with low temperature glazes, and finally (D) Sr$_2$(Mg$_{0.5}$Mn$_{0.5}$)Ge$_2$O$_7$ pigment loses the black color even in the low temperature glazes, producing brown color.

3.3. Synthesis by Coprecipitation Method

In order to analyses the possible effect of stabilization of the pigment against the glazes, the (C) Sr$_4$CuMn$_2$O$_9$ that shows the nearest hue h to the reference carbon black and the maximum NIR reflectance of the series (with the nearest bandgap to an ideal NIR reflective black pigment), has been prepared by ammonia coprecipitation method.

Figure 17 shows the commercial Cr-hematite and a comparison between Sr$_4$CuMn$_2$O$_9$ pigments prepared by CE (fired at 1000°C/12h) and CO ((fired at 1000°C/6h. Both samples show Sr$_4$CuMn$_2$O$_9$ as single phase detected by XRD. CO sample fired at only 6 h at 1000°C shows better color characteristics than CE pigment fired 12 h at 1000°C: the lightness L* is lower than in CE sample (1.35 eV versus 1.38 eV for CE pigment); in agreement, the R_{NIR} value is also lower (44% versus 51% for CE sample). The 3wt% application in single firing glaze produce a dramatically decomposition of the CO sample with a very profuse pin hole and blueish ($b^*=-4.6$) indicating a lower stability on glazes than CE sample.

Figure 18 shows the comparison of SEM images and EDX mapping between Sr$_4$CuMn$_2$O$_9$ pigments prepared by CE (1000°C/12h) and CO (1000°C/6h) methods. Both samples show a homogeneous distribution of ions in the aggregates. CE sample shows particles of 0.5-1 µm forming aggregates of 1-7 µm and CO presents finer particles of 0.5 µm forming aggregates of 2-8 µm. The fine particles in the CO sample react with the glaze and decompose rapidly producing the profuse pin hole observed in the glazed sample.
3.4. Photocatalytic Activity on Orange II Substrate

Table 4 shows the photodegradation parameters \(t_{1/2} \) and the regression coefficient of the corresponding line from equation 6) of Orange II test carried out with pigment series. Figure 19 presents the respective photodegradation curves: P25 is the usual commercial reference of TiO\(_2\) photocatalyst nanopowder supplied by Degussa [42], CONTROL is the obtained photodegradation carried out without powder addition

<table>
<thead>
<tr>
<th>Pigment</th>
<th>Photodegradation Parameters</th>
<th>Regression Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial ELCOM</td>
<td>(t_{1/2}) = 4.5/3/0.6</td>
<td></td>
</tr>
<tr>
<td>Sr(_4)CuMn(_2)O(_9) CE</td>
<td>(t_{1/2}) = 4.5/3/0.6</td>
<td></td>
</tr>
<tr>
<td>Sr(_4)CuMn(_2)O(_9) CO</td>
<td>(t_{1/2}) = 4.5/3/0.6</td>
<td></td>
</tr>
</tbody>
</table>

Figure 17: Commercial Cr-hematite and Sr\(_4\)CuMn\(_2\)O\(_9\) pigment prepared by CE and CO methods.

Figure 18: Comparison of SEM and EDX mapping between Sr\(_4\)CuMn\(_2\)O\(_9\) pigments prepared by CO method (fired at 1000ºC/6h)
Table 4: Photodegradation Parameters of Orange II Test with Powders: P25 (Degussa Reference), CONTROL (Carried out Without Powder), A (A Fe₁₂Cr₀₈O₃ Pigment), B (B YMnO₃), C(CE Fired) (Fired C Sr₂CuMn₂O₉ Pigment by CE Method), C(CO Fired) (Fired C Sr₂CuMn₂O₉ Pigment by CO Method), C(CO Dried) (Dried 110°C C Sr₂CuMn₂O₉ Pigment by CO Method)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C(CE)</th>
<th>C(CO)</th>
<th>C(CO dried)</th>
<th>D</th>
<th>P25</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>t₁/₂(min)</td>
<td>329</td>
<td>423</td>
<td>216</td>
<td>147</td>
<td>37</td>
<td>450</td>
<td>27</td>
<td>497</td>
</tr>
<tr>
<td>R²</td>
<td>0.91</td>
<td>0.89</td>
<td>0.87</td>
<td>0.98</td>
<td>0.87</td>
<td>0.93</td>
<td>0.98</td>
<td>0.89</td>
</tr>
</tbody>
</table>

to reactor, A, B and D are the respective fired powders of pigment series and C(CE fired) is the fired C Sr₂CuMn₂O₉ pigment by CE method, C(CO fired) the fired C Sr₂CuMn₂O₉ pigment prepared by CO method and C(CO dried) is the dried (110°C) C Sr₂CuMn₂O₉ pigment prepared by CO method.

The dry C Sr₂CuMn₂O₉ pigment prepared by CO method shows a photocatalytic activity against Orange II degradation similar to the P25 reference, but the fine powders are difficult to recover from the irradiated dispersion. The C fired CO powders (1000°C/6h) shows a moderate photoactivity on Orange II with half time of 147 min lower than its homologous fired CE sample of C pigment (1000°C/12 h) with t₁/₂=216 min. The A Fe₁₂Cr₀₈O₃ pigment show a low photoactivity over Orange II with t₁/₂=329 min and finally both (B) YMnO₃ and (D) Sr₂(Mg₀₉Mn₀₃)Ge₂O₇ pigments do not present significant photoactivity showing photodegradation half times similar to the CONTROL test. Pigment C that shows the highest photoactivity also presents the highest E₉ (1.38 eV) of the pigment series; however the (A) Fe₁₂Cr₀₈O₃ pigment which shows the lowest E₉ (1.13 eV) also presents some photoactivity, therefore the photocatalytic activity is not associated directly to E₉; other factors such as the e⁻ hole pair recombination rate should be considered (Table 4) [40].

4. CONCLUSIONS

Cool black pigments wit interest for its application in asphalt urban pavements and building floors for moderate the urban heat island effect (UHI) based on (A) Cr doped hematite Fe₂O₃ (trigonal, R-3c), hexagonal perovskites (B) YMnO₃ (hexagonal, P6₃cm) and (C) Sr₂CuMn₂O₉ (trigonal, P321) and (D) melilite Mn-Sr₂MgGe₂O₇ (tetragonal, P-42mc) with high NIR reflectance have been synthesized at optimized temperature-soaking time conditions showing the corresponding crystalline phase as the only phase at XRD.

(B) YMnO₃ pigment is the nearest black color to the carbon black used as reference, with ΔE*=3.7 followed by (D) Sr₂(MgMn)Ge₂O₇ (ΔE*=14.3), (A) Fe₁₂Cr₀₈O₃ (ΔE*=22.1) and (C) Sr₂CuMn₂O₉ (ΔE*=25.5). The NIR diffuse reflectance RₙIR decreases in the sequence C (51%), B(39%), D (32%) and finally A(23%). E₉ data measured from Kubelka Munk absorption spectra are into the range 1.38 eV for (C) Sr₂CuMn₂O₉ the nearest to ideal black bandgap to 1.13 eV for (A) Fe₁₂Cr₀₈O₃ pigment: the same progression that for RₙIR values.

Therefore, the pigment (C) Sr₂CuMn₂O₉ shows the nearest hue h to the reference carbon black and the highest NIR reflectance (51%). However the pigment (B) YMnO₃ shows the lowest color tolerance ΔE* from the reference and the (A) Fe₁₂Cr₀₈O₃ pigment shows the minimum L* and chroma C* of the series (best black chroma).

Analysis of UV-Vis-NIR diffuse spectra indicates that a crystal field mechanism (CFM) of the chromophore ions Cr³⁺ and Fe³⁺ in corundum structure is associated to color of pigment A. Likewise a crystal field mechanism (CFM) explain the black color of
YMnO₃ associated to the D₃h trigonal bipyramid allowed transition of Mn³⁺ ions. A paired spin-exchange transition mechanism (PET) of Mn⁴⁺ ions with adjacent Mn⁴⁺ ions and also with adjacent Cu²⁺ explain the high intensity of absorption in the visible region for the pigment B and a probably intervalence charge transfer mechanism Mn³⁺-Mn²⁺ is involved to produce the color (IVCTM) in pigment D.

The pigments were applied in alkyd paint and two kind of glazes (double firing glaze at 1000°C and single firing glaze at 1080°C), and 2wt% added to porcelain stoneware powder (1200°C). The ceramic applications of (A) Fe₁₋₂Cr₀.₈O₃ pigment shows good behavior in the free ZnO glaze and also in porcelain stoneware, (B) YMnO₃ and (C) Sr₂CuMn₂O₉ black pigments are compatible with low temperature glazes, and finally (D) Sr₂(Mg₀.₃Mn₀.₅)₂Ge₂O₇ pigment loses the black color even in low temperature glazes application producing brown color. All pigments show high NIR reflectance in all tested applications.

In order to analyze the possible effect of stabilization of the pigment against the glazes, the (C) Sr₂CuMn₂O₉ pigment was prepared by ammonia coprecipitation method. However the fine particles of CO sample reacts with the glaze and decompose rapidly producing the probe pin hole in the glazed sample.

The photoactivity of the pigment series on Orange II were estimated; the C Sr₂CuMn₂O₉ pigment shows moderate photoactivity on Orange II (τ_1/2 = 216 min) and the A Fe₁₋₂Cr₀.₈O₃ pigment also shows some activity (τ_1/2 = 329 min), however both (B) YMnO₃ and (D) Sr₂(Mg₀.₃Mn₀.₅)₂Ge₂O₇ pigments do not present significant photoactivity showing photodegradation half times similar to the CONTROL test. The photoactivity is not associated directly to E₉ and other factors such as the e-hole pair recombination rate should be considered.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of Universitat Jaume I (UJI B2018-43 Project).

REFERENCES

[19] De Teresa JM, Ibarra MR, Algarabel PA, Ritter C. Evidence for magnetic polarons in the magnetoresistive perovskites,