
 Journal of Solar Energy Research Updates, 2021, 8, 105-117 105 

 
 E-ISSN: 2410-2199/21 © 2021 Zeal Press 

A Provisional Model for the Optimal Management of a Charging 
Station Assisted by Photovoltaic Panels for Plug-In Electric 
Vehicles 

Rizzo Gianfranco1,*, Tiano Francesco Antonio2 and Marino Matteo3 

1Full Professor at Dpt. of Industrial Engineering, University of Salerno, Fisciano, Salerno, Italy 
2Doctoral Research Fellow at Dpt. of Industrial Engineering, University of Salerno, Fisciano, Salerno, Italy 
3CEO at eProInn S.r.l., Fisciano, Salerno, Italy 

Abstract: There is a strongly increasing diffusion of Electric Vehicles (EV) and Plug-in Hybrid Electric Vehicles (PHEV), 
in order to reduce air pollution in urban environment and to mitigate the global warming issues. Anyway, the 
achievement of this latter goal strictly depends on the source of primary energy used to generate electrical energy. In the 
paper, a model for the optimal design and operation of a charging station for EV and PHEV assisted by a PhotoVoltaic 
(PV) plant is presented. A provisional model for the estimation of the incoming insolation, based on cloudiness prevision, 
is integrated with a nonlinear constrained optimization algorithm, in order to satisfy the load while minimizing the 
recourse to electrical grid for battery storage charging. Simulations on different locations and charging loads for various 
size of PV plant and battery capacity are presented, and the benefits in terms of CO2 reduction discussed. 
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1. INTRODUCTION 

The growth of world energy consumption and the 
increase of passenger vehicles are setting new 
challenges to environmental protection. Global 
warming mitigation is a pressing issue, and 
governments and institutions are defining new stringent 
limits for CO2 emissions [1]. 

Large diffusion of Electric Vehicles (EV) and Hybrid 
Electric Vehicles (HEV) seems to be the most feasible 
solution to these problems [2]. However, the need of 
fast charging infrastructure and the still low penetration 
of renewable electricity production limit the feasibility of 
a rapid electrification of the fleet. Moreover, a very 
large reconversion of fleets with massive scrapping of 
cars often still in good conditions is not the most 
sustainable solution in a Life Cycle Assessment (LCA) 
perspective [3], and other options, as ecological car 
reconversion, are being considered [4]. 

One of the most critical aspects toward the 
mitigation of global warming issues by means of fleet 
electrification is the source of primary energy used to 
generate electrical energy for recharging the vehicles. 
It is therefore mandatory to maximize and optimize the 
recourse to renewable sources, as wind and 
particularly PhotoVoltaics (PV), to reduce the CO2 
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production associated to road transport, also with direct 
use of PV on cars [5]. 

The problem of designing and managing of 
recharging stations for electric and plug-in vehicles has 
attracted many researchers in last decade (Figure 1). 
Some recent reviews of these studies can be found in 
[6-8]. Part of these papers, about 10% of them, has 
focused on recharging stations assisted by photovoltaic 
(Figure 2) [9]. 

In the following, a large but not comprehensive 
overview of the papers published on such subjects is 
presented. Besides prevailing use of batteries as 
storage systems, the recourse to Compressed Air 
Energy Storage (CAES) [11] and to hydrogen and 
electrolyzers has been also considered, with the 
recourse to complex stochastic methodologies [12]. 
Demand response approach is often used, also 
considering multi-objective approach to achieve the 
best compromise between minimizing cost of electricity 
and polluting emissions [13]. The comprehensive 
benefits of solar assisted EV charging facilities in a 
complex urban environment has been also analysed 
[14]. The dynamic EV charging via the real time 
coordination between the PV power station, the grid 
and the storage for enhancing the station working as a 
stand-alone system as long as possible and satisfying 
the EVs requirement has been proposed [15]. The 
time-of-use adjustment method is adopted also by 
other authors [16], by the charging/discharging 
priorities calculation and electricity prices. The 
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proposed approach would ensure that the energy 
usage does not exceed contract capacity, giving also 
directions for optimizing the contract capacity. A 
mathematical optimization approach for the optimal 
configuration of a grid-connected electric vehicle 
extreme fast charging station considering integration of 
photovoltaic and energy storage has been also studied 
[17]. The proposed model minimizes the annualized net 
cost, including investment and maintenance cost of 
charging ports, PV and energy storage, net cost of 
purchasing energy from utility and selling energy to EV 
customers, degradation cost of energy storage and 
demand charge. In the paper [17] a day-ahead optimal 
scheduling model via Mixed-Integer Linear 
Programming (MILP) is proposed. Constraints include 
the active power balance between load demands and 

generation, the maximum/minimum output power of 
PV, wind turbine and diesel generation, the maximum 
charging power and the charging time. 

Most of the papers have focused their analysis on 
the methodologies for optimal management of such 
plants, considering different approaches to estimate the 
vehicle scheduling. In spite of a large attention to a 
such fundamental problem, a relatively little effort has 
been spent on considering the benefits associated to a 
prediction of solar irradiation. Indeed, the theoretical 
solar irradiation in sunny conditions can be computed 
with high precision [18], while the prediction of the 
cloudiness index can be now available for many 
locations by on-line services [19], so allowing to 
estimate the real irradiation over a time horizon of 
several hours. 

 

Figure 1: References on Scopus database - TITLE-ABS-KEY (electric AND vehicle AND charging AND station) [10]. 

 

 

Figure 2: References on Scopus database - TITLE-ABS-KEY (electric AND vehicle AND charging AND station AND 
photovoltaics) [10]. 
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In this paper, the models used to predict solar 
irradiance taking into account the cloudiness index are 
reviewed [18]. Then, a mathematical model for the 
optimal design and operation of a charging station for 
EV and PHEV assisted by a PV plant is presented. The 
model of the recharging station is integrated with a 
nonlinear constrained optimization algorithm, in order 
to satisfy the incoming load while minimizing the 
recourse to electrical grid for battery storage charging. 
Simulations on different locations and charging loads 
for various size of PV plant and battery capacity are 
presented, and the benefits in terms of cost and CO2 
reduction discussed. A specific goal of the paper is 
assessing the benefits achievable by the knowledge of 
the incoming solar irradiance in a given time horizon 
(typically 48 hours), in order to optimize the operation 
of the battery and minimize the recourse to the grid. To 
this end, the results obtained with a predictive model 
are compared with those achieved by using a heuristic 
non-predictive approach. 

2. PREDICTION OF SOLAR IRRADIANCE 

In the following, some models proposed in literature 
and validated by [18] are reviewed: the modified BCLS 
model, the Kasten model and the Munro model. In 
order not to affect the fluency of this work, an overview 
of the astronomical and general formulas are given in 
Appendix A. 

2.1. The Modified BCLS Model 

In cloudless sky condition, the direct beam I0  
[W/m2] and diffuse irradiance D0  [W/m2] on a horizontal 
surface are given by: 

I0 =G0 (a1 + b1 uw ! a3(d ! 400))exp(!(a2 + b2 uw
+b3(d ! 400))m)

D0 = k (Iw ! I0 )
a1 = !0.13491, a2 = 0.13708, a3 = 3.68 "10

!5

b1 = !4.28 "10!3, b2 = 2.61 "10
!3, b3 = 1.131 "10

!4

       (1) 

where d  is the dust content (200 particles per cm3), k  

is an empirical coefficient equal to k = 0.5(cos! z )
1
3  and 

wI  [W/m2] is the direct irradiance transmitted in 
absence of scattering, given by: 

Iw =G0 (0.938 exp(!0.00154 X))

+(2.97 X 2.1 ! 773.24 "10!5 X 3 + 85 058.73 1+ X
1+10 X 2 )10!3

with X = m uw
             (2) 

If a relative sunshine S  computed as S = (1! PC)  
where PC  is the cloudiness, the direct and diffuse 
irradiance in cloudy sky are given by: 

I = S I0
D = S D0 + t (1! S) (I0 + D0 )

         (3) 

where t  is the cloud transmissivity factor which can be 
calculated as: 

t = 0.61! 0.015 LAT + 0.0002 LAT 2         (4) 

Equation (4) has been verified for latitudes from 40 
to 50 degrees. 

The global irradiance G [W/m2] is given by: 

G = I + D
1! a (0.2 + 0.5 (1! S))

         (5) 

where a  is the albedo factor ( a = 0.15  for asphalt 
ground) 

Authors of this study propose a slight modification of 
this model, in order to consider a tilted surface. In this 
case, Equation (3) can be modified considering 
Equations (36) and (37) to include the view factors and 
the reflected irradiance R : 

I * = S I0 RB
D* = Fsky (S D0 + t (1! S) (I0 + D0 ))
R* = Fgro a (I + D)

        (6) 

Consequently, Equation (5) becomes: 

G = I * + D* + R*

1! a (0.2 + 0.5 (1! S))
         (7) 

2.2. The Modified Kasten Model 

The global irradiance G  [W/m2] for a cloudy sky on 
a horizontal surface is given by: 

G =G0 (1! 0.72 PC
3.2 )           (8) 

where 0G  [W/m2] is the global irradiance for cloudless 
sky evaluated with the MAC model: 

G0 = I0 + Dr + Da           (9) 

where I0  [W/m2] is the direct component of the 
irradiance and Dr  and Da  [W/m2] are the diffuse 
components due to Rayleigh and aerosol scattering, 
respectively: 
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I0 =G0 (! 0 ! r " aw ) ! a

Dr =G0 ! 0
1" ! r
2

Da =G0 (! 0 ! r " aw ) (1" ! a ) aa g

       (10) 

where G0  [W/m2] is the extraterrestrial irradiance on a 
horizontal surface, ! 0 , ! r  and ! a  are the 
transmissivities for absorption by ozone, for Rayleigh 
scattering and for extinction by aerosol, respectively, 
aw  is the absorptivity by water vapor, aa  is the 
spectrally-averaged single-scattering albedo for 
aerosols, while g  is the ratio of forward to total 
scattering by aerosols. 

The transmissivity for absorption by ozone ! 0  of an 
assumed ozone layer u0  with 3.5 mm of thickness is 
computed by: 

x0 = u0 m

a0 = 0.1082 x0
1+13.86 x0

0.805 +
0.00658 x0

1+ (10.36 x0 )
3

+ 0.00218
1+ 0.0042 x0 + 0.00000323 x0

2

! 0 = 1" a0

      (11) 

The transmissivity for Rayleigh scattering ! r  is 
given by: 

! r = 0.9768 " 0.0874 m + 0.010607552 m2 " 8.46205 #10"4 m3

+3.57246 #10"5 m4 " 6.0176 #10"7 m5

           (12) 

The transmissivity for extinction by aerosol ! a  is 
given by: 

! a = ka m          (13) 

where the unit air mass aerosol transmissivity, ka , is 
equal to 0.90. 

The absorption by water vapor is determined as: 

aw = 0.29 x2
(1+14.15 x2 )

0.635 + 0.5925 x2
with x2 = m uw

      (14) 

Lastly, the spectrally-averaged single-scattering 
albedo for aerosols aa  is equal to 0.75 and the ratio of 
forward to total scattering by aerosols, g , is given by: 

g = 0.93! 2.21lnm         (15) 

Analogously to the modified BCLS model, in order 
to consider a tilted surface, Equation (10) should be 
modified as follows: 

I0
* =G0 (! 0 ! r " aw ) ! a
D* = (Dr + Da ) Fsky

R* = a( I0
RB

+ Dr + Da ) Fgro

       (16) 

2.3. The Munro Model 

The direct irradiance under cloudy sky, I  [W/m2], 
on a horizontal surface is given by: 

I = I0 (1! PC)          (17) 

where I0  is the direct irradiance under clear sky 
calculated as for eq:Kasten_direct_diffuse. 

The diffuse irradiance under cloudy sky, D  [W/m2], 
is given by: 

D = D1 + D2          (18) 

where D1  and D2  correspond to the diffuse radiation 
from the cloudless portion of the sky plus the radiation 
that passes through the cloud layer and the diffuse 
radiation due to the reflections between cloud and 
ground. They are determined via the following 
equations: 

D1 = D0 (1! PC) + PC I0 (1! an !"n )

D2 = (I + D1 ) PC "b a
1!"b a

      (19) 

where D0  is the cloudless sky diffuse radiation, na  is 
the absorptance of the cloud, !n , !b  and a  are the 
reflectance of the cloud top, the cloud base and the 
albedo of the ground, respectively. D0  is evaluated as 
the sum of Dr  and Da  from eq:Kasten_direct_diffuse, 
respectively. Common values are: an = 0.18 , !b = 0.6  
and a = 0.2 . !n  is calculated as: 

!n =1+ (exp("0.5656 m x) (x (1"1.48 m) + 3.58 m"1 " 2.62)
"3.54 m"1 " 2.62) (x + 5.2)"1

           (20) 

where x  is the ratio of cloud thickness to the mean free 
path of light through the cloud. x  was set equal to 1.5. 

The global irradiance on cloudy sky G on a 
horizontal surface is given by: 

G = I + D          (21) 

When a tilted surface is considered, from Equation 
(19) it is possible to include view factors and reflected 
irradiance as follows: 
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D* = (D1 + D2 ) Fsky
R* = (D1 + D2 ) Fgro

        (22) 

3. METHODOLOGY 

In order to assess the benefits achievable with the 
prediction of solar irradiation in the energy 
management of a recharging station assisted by 
photovoltaics for plug-in vehicles, a mathematical 
model of the system has been developed in Matlab. 
The scheme of the plant is presented in Figure 3. 

The electric energy flowing from the PV panels, 
from/to the battery and from/to the grid concur to 
recharge the cars, whose hourly load is considered 
known. A computer is connected via Internet to a 
provider of meteo data, achieving the prediction of 
cloudiness index for the place where the recharging 
station is located. 

A possible scheme of architecture for real time 
Model Predictive Control (MPC) is presented in  
Figure 4. A submodel provides the updated estimation 
of the electrical load for vehicle recharging based on 
historical data and external information on traffic and 
other exogenous variables. Another submodel estimate 
the incoming solar power in the next time horizon (i.e. 
48 hours), combining the prediction of cloudiness index 
with solar radiation models. These data, together with 
the battery state of charge and the actual electric load, 
are supplied to the plant model, integrated with an 
optimization algorithm. The output is the optimal power 
flow from/to the battery and the grid in the electrical 
node. 

 

Figure 4: Scheme of the real-time control of the plant. 

3.1. Predictive Optimal Model 

A model of solar irradiation then predicts the net 
solar power for next 48 hours, and a model of the plant 
integrated with a non-linear constrained optimization 
algorithm determines the optimal strategy for 
exchanging electric power with the grid, in order to 
satisfy the load (i.e. recharging the vehicles) while 
minimizing the cost of the energy (or, in alternative, the 
impact on CO2 emissions): 

X
min f (X) =

i=1

n

!PG ,max "h Ci         (23) 

where PG ,max  is the maximum power that can be 
exchanged with the grid (drawn or delivered). The 
decision variables Xi  represent the fraction of the 
maximum power exchanged with the grid. They can 
therefore vary from -1 (maximum power delivered to 
the grid) to 1 (maximum power purchased from the 
grid). The time horizon is equal to 48 hours ( n = 48 ), 
and the time interval !h  is assumed equal to 1 hour. 

 

Figure 3: Scheme of the recharging station. 
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The unit energy cost Ci  is assigned as a function of 
the day hour when drawing energy from the grid 
( Xi > 0 ), if time slots are considered (F1 and F2), while 
it may have a constant value in case the cost is not 
modulated with the hour (case F0). The possibility to 
delivering the power to the grid is also considered 
( Xi < 0 ), with a price, CV , consistently lower that the 
cost of purchasing power from the grid (F0, F1 and F2). 
The possibility that energy cannot be sold to the grid 
(i.e. CV = 0 ) has been also considered. 

In the computations, the data presented in Table 1, 
which are consistent with the Italian market, are 
assumed. 

The power entering of leaving the battery, PB , is 
then determined by the values of load, PL , and by the 
power from PV panels, PPV . When energy is stored in 
the battery ( PB > 0 ), a Coulombic efficiency !B  is 
considered to take into account Joule losses 
associated to the current (it is assumed constant and 
equal to 0.95). A value 1 is assumed when energy is 
drawn from battery: 

PB = (PPV + Xi PG ,max ! PL )"B        (24) 

The State of Charge (SOC) in then determined as a 
function of the battery capacity, CB , starting from the 
initial value SOC1 , considered known: 

SOCi = SOCi!1 + PB
"h
CB

        (25) 

An equality constraint on the final value of the State 
of Charge is imposed (terminal constraint) as well as 
further inequality constraints expressing the condition 
that the State of Charge must stay between 0 and 1, at 
any time: 

SOCn = SOC1
SOCi ! 0, SOCi " 1, i =1,n

       (26) 

3.2. Heuristic Rule Based Model 

In order to assess the benefits of the algorithm 
based on predictive model, a second method based on 
heuristic approach has been considered. The energy 
management strategy is based on the rules listed in 

This strategy does not necessarily result in a final 
value of SOC equal to the initial one, as for the optimal 
strategy. Therefore, in order to make a correct 

Table 1: Cost of the Electric Energy 

Case  Cost of the Energy 
/kWh Range 

F1  0.07516  Xi > 0, h = 8 !19  

F2  0.06148  Xi > 0, h = 0 ! 8, 19 ! 24  

F0 (no time slots)  0.06595  Xi > 0, h = 0 ! 24  

CV (sale to the grid)  0.03980  Xi < 0, h = 0 ! 24  

CV (no sale to the grid)  0  Xi < 0, h = 0 ! 24  

 

Table 2: Rules for Heuristic Strategy 

Case Rule  

 
PPV ! PL   

The load is satisfied by photovoltaics, and the extra power is sent to the battery;  
if the extra power exceeds the maximum battery capacity, the difference is delivered to the grid;  
if the power to be delivered to the grid is greater than maximum power, the difference is lost. 

PPV < PL  

SOC ! SOCn   

The power from photovoltaic is used to partly satisfy the load;  
the missing power is drawn from the battery;  
no power is taken from the grid. 

PPV < PL   

SOC < SOCn   
The power from photovoltaic is used to partly satisfy the load;  
the missing power is partly drawn from the battery and partly taken from the grid. 
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comparison between the two strategies the cost 
corresponding to the missing or extra energy in the 
battery at the final stage ( ni = ) is accounted by the 
following formula: 

Cost =
i=1

n

!Xi PG ,max "h Ci + (SOC1 # SOCn )CB k      (27) 

where the unit cost k  is equal to F0 in case of 
purchasing and equal to CV  in case of delivering the 
energy to the grid. 

3.3. Load Profiles 

Three different profiles, shown in Figure 5, for load 
have been considered, with a total charge of 69 kWh 
within the day (and 138 kWh in the time horizon). The 
profile 1 has a prevailing recharge during the day, the 
profile 2 takes most of the energy during the night, and 
profile 3 has a constant load in the 24 hours. 

4. RESULTS 

In order to assess the effect of the different 
conditions and variables on the benefits achievable by 
the recourse to a Model Predictive Control approach, a 
systematic comparison with the cost and CO2 obtained 
with the two strategies has been performed. The 
conditions analyzed are described in Table 3. 

Table 3: Conditions Analyzed in the Study 

Description  Values  

PV Area  m2  0 - 100 

Tilt angles  deg  20 

Azimuth  deg  0 (South) 

PV efficiency  -  0.18 

Days of the year  -  January 1st - July 1st  

Time horizon  h  48  

Battery capacity  kWh  1 - 30  

Load profiles  -  1 - 2 - 3  

Control strategy  -  A-Predictive, B-Heuristic 

CO2 emission factor (grid) gCO2,eq/kWh  397 

 
The emission factor for the electric energy provided 

to the recharge of electric vehicles is set to 397 
gCO2,eq/kWh, as determined by the Italian regulations 
[6]. The power coming from PV panels is considered 
carbon free. 

Figure 6 present the solar data in the provisional 
horizon of 48 hours for two representative conditions 
(January 1st and July 1st), for the assigned location. 
The global irradiance is estimated starting from direct 
theoretical irradiance and cloudiness index. Solar 
height, solar azimuth and incidence angle are also 
plotted, in the two cases. 

 

Figure 5: Load profiles for vehicle recharging. 
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Figures 8 and 9 present an example of the results of 
simulations for provisional optimal strategy and 
heuristic strategy, respectively. The conditions are: 

• Battery capacity: 5 kWh,  

• Day: July 1st,  

• Area of PV panels: 30 m2,  

• Load profile: 1 (Figure 5)  

In both cases, PV panels have provided 67 kWh 
and the load (138 kWh) has been satisfied. Is case of 
provisional strategy, 71.2 kWh have been drawn from 
the grid, with a cost of 5.22  (0.0379 /kWh), while 
in case of heuristic strategy 82.9 kWh have been 
drawn, with a cost of 6.05  (0.0438 /kWh). In this 
case, the recourse to provisional model allows to save 
13.6% of cost. It can be also noticed that in case of 
predictive strategy the final values of State of Charge 
(0.7) is equal to the initial one (Figure 5), while this is 
not true for the heuristic strategy, where the final SOC 
is 0.57, and an additional amount of electrical energy 
(0.66 kWh) is drawn from the grid to make a fair 
comparison with the case of provisional strategy. 

The benefits of the provisional strategy with respect 
to the heuristic one is due to different mechanisms: i) 
avoiding/limiting the lost of extra power from PV panels 
due to unavailability of battery capacity; this occurrence 
can be avoided thanks to the prediction of the incoming 
solar power and to the adoption of proper strategies to 
keep adequate capacity in the battery; ii) lower 

recourse to power delivering to the grid, whose price is 
consistently lower than the cost paid for buying energy 
from the grid; also this goal can be achieved thanks to 
the prediction capabilities and to the optimization 
algorithm, with the adoption of strategies that keep free 
capacity in the battery; iii) optimizing the purchase of 
power from the grid, privileging the time slots with lower 
cost; iv) limiting the excursions of battery SOC, 
associated with Coulombic losses; this results is 
achieved thanks to the constraint on the final SOC 
value in the constrained optimization algorithm, that 
naturally limits the SOC excursions. 

Graphs shown in Figure 10 (cases: C01 and C02) 
present the case of simulations in winter while graphs 
shown in Figure 10 (cases: C03 and C04) present 
those in summer, for different area of PV panels (from 
0 to 100 m2). In these cases, a quite large battery 
capacity has been considered (30 kWh). Two scenarios 
has been analyzed: when it is possible to sale extra 
power to the grid (cases: C01 and C03), or not (cases: 
C02 and C04). 

As expected, the cost (in €/kWh, normalized to the 
load) decreases when increasing the total energy 
harvested from PV panels. In summer time, the PV 
power can completely satisfy the load (i.e. cost is equal 
to zero), and also reach negative values when extra 
power is sold to the grid (case C03). When the area pf 
PV is zero there is no differences between the four 
cases, since all the energy is drawn from the grid. The 
average cost with predictive strategy is lower than the 
heuristic one, since the optimal strategy tend to reduce 

 

Figure 6: Solar irradiance, cloudiness, solar height, azimuth and incidence angles (January 1st). 
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the power purchasing in the hours when the cost is 
higher. It can be also observed that there are no 
differences between the results in the cases shown in 
Figure 10 (cases: C01 and C02): in these cases, in 
winter time there is no extra power to sale to the grid. 

In all the examined cases, the cost achieved with 
the provisional strategy is lower than the one obtained 
with the heuristic strategy. The relative gain increases 
when the PV contribute is higher. 

4.1. Effect of Battery Capacity and of Load Profile 

The study has been extended by varying battery 
capacity, and for different load profiles (Figure 5). For 
each series of simulations, PV area has been varied 
from 0 to 100 m2 (as in cases shown in Figure 10). 
Each series of results has been characterized by an 
average gain of the predictive strategy in terms of 
energy cost (€/kWh) and CO2 emissions. The results 
are presented in Figure 11 (a-b-c). To add generality to 

 

Figure 7: Solar irradiance, cloudiness, solar height, azimuth and incidence angles (July 1st). 

 

Figure 8: Simulation with predictive strategy (July 1st). 
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the results, the battery capacity has been expressed in 
percent with respect to the day load (69 kWh). 

The results show that the percent gain obtainable 
by the use of a predictive model with respect to the 
given heuristic strategy in terms of reduction of energy 
cost is in many cases between 20% and 30%. Lower 
values are reached with small battery capacity, since 
the added value of the algorithm essentially consists in 
a better use of the battery. Some irregularities can be 
also noticed (i.e. a negative gain for Profile 2), and 
some not regular trends in the zone between 5% and 
15% of percent battery capacity. In all the investigated 
cases, the best results are obtained starting from about 
5% of capacity battery with respect to daily load. Some 
presence of irregularities may be also due to presence 
of local minima in the optimization process, or to 
incomplete convergence to the results. 

The benefits in terms of CO2 reduction (orange 
point) have similar trends with respect to the cost 
reduction (blue points), but attain lower values. This 
may be explained considering that the objective 
function of the optimization process is expressed in 
terms of cost reduction, and not of CO2 reduction. 
Moreover, reducing the recourse to grid energy in the 
period with higher costs (i.e. F1 tariff) and increasing 
the purchasing in the period of lower cost (i.e F2 tariff) 
reduces the total cost but does not change the CO2 
impact, that may become even higher. In other words, 
the two objectives (cost reduction and CO2 reduction) 
are strongly correlated but not equivalent. A 

comparison of results with the three profiles evidences 
no relevant differences between the cases 1 (prevailing 
load in the day) and 2 (prevailing load during the night), 
while the benefits of the predictive strategy for profile 3 
(uniform load) seem lower than the other cases, at 
higher battery capacity. Anyway, further investigations 
seem necessary to better assess the relationship 
between PV power, load and battery capacity. 

5 CONCLUSIONS 

In order to maximize the environmental benefits of 
the electric mobility, an increasing diffusion of 
recharging stations connected to the electrical grid and 
powered by photovoltaic panels is expected. The study 
presented in this paper has shown that the recourse to 
mathematical models to predict the incoming solar 
power integrated with tools of mathematical 
optimization can results in a smarter management of 
the battery and in a lower and cheaper access to the 
grid, for three different profiles of load representative of 
realistic cases. The benefits in terms of cost reduction 
ranges between 20% and 30% in many cases, with 
respect to non-predictive heuristic strategies. A 
reduction on CO2 production between 10% and 20% is 
also achieved. In order to maximize the benefits, 
further developments seem necessary to integrate the 
optimal management with the combined prediction of 
incoming solar power and of the recharging load, 
based on statistical techniques and on real-time data 
processing. 

 

Figure 9: Simulation with heuristic strategy (July 1st). 
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APPENDIX: ASTRONOMICAL AND GENERAL 
FORMULAE 

Solar constant ISC , that is the solar electromagnetic 
radiation per unit area measured at a distance of 1 au 
from the Sun, is equal to 1 367 W/m2. The intensity of 

the extra terrestrial solar radiation I0  [W/m2] in a given 
year day n  is computed with: 

I0 = ISC (1+ 0.033cos
2!n
365

)        (28) 

The extra-terrestrial solar irradiance on a horizontal 
surface G0  [W/m2] is determined by: 

G0 = I0 cos! z          (29) 

 

Figure 10: Examined Cases. 

 

 

Figure 11: Average gain of predictive strategy with different battery capacity and load profiles. 
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The cosine of the solar zenith angle ! z  is 
calculated as: 

cos! z = cos LATloc cos" cos# + sin# sin"       (30) 

where LATloc , !  and !  are the local geographical 
latitude, the solar declination and the hour angle, 
respectively. 

The declination !  [rad] is computed as: 

! = 0.4093 sin 2" (284 + n)
365

       (31) 

The hour angle !  [rad] is given by: 

! = 0.2618 (tsolar "12)         (32) 

where tsolar  is the solar time, which is in turn computed 
as: 

tsolar =
60 tloc + 4(LONstd + LONloc ) + ET

60
      (33) 

where tloc  is the local time, LONstd  and LONloc  are the 
standard and local longitude, respectively, and ET  is 
the so-called equation of time. The latter is calculated 
as: 

ET = 229.2 (0.000075 + 0.001868 cosB ! 0.032077 sin B
!0.014615 cos 2B ! 0.04089 sin 2B)

with B = (n !1)2"
365

           (34) 

If a surface with a tilt angle !  [rad] and an azimuth 
angle !  [rad] is considered, the cosine of the angle of 
incidence !  of solar irradiance is given by: 

cos! = sin" sin LATloc cos# $ sin" cos LATloc sin# cos%
+ cos" cos LATloc cos# cos& + cos" sin LATloc sin# cos% cos&
+ cos" sin# sin% sin&

           (35) 

When a tilted surface is considered, view factors 
with the sky and the ground can be introduced: 

Fsky = 1
2
(1+ cos!)

Fgro = 1
2
(1" cos!)

        (36) 

The fraction of direct irradiance on a tilted surface 
can be computed after a correction factor RB : 

RB = cos!
cos! z

         (37) 

The standard air mass mstd  has been computed 
from the Badescu model: 

mstd =
! cos" z + 2cos " z + f 2 !1

f !1

where f =1+ 11
6371.2

      (38) 

From the knowledge of mstd , the air mass m  
computed at the altitude h  [m] of a considered site is 
given by: 

m = mstd
p(h)
pstd (h)

         (39) 

where p(h)  [Pa] is the actual atmospheric pressure of 
the site and pstd (h)  is the standard pressure at height 
h  which can be computed as: 

pstd (h) = pstd (0)(
T (h)
Tstd (0)

)5.2561        (40) 

where pstd (0)  is the standard pressure at sea level (1 
017.085 hPa), T (h)  [K] is the ambient temperature at 
altitude h , and Tstd (0)  [K] is the temperature at sea 
level which can be derived from T (h)  as: 

Tstd (0) = T (h) + 0.0065 h         (41) 

From the knowledge of the air relative humidity u  
and of the air temperature at ground level T  [K], the 
thickness of precipitable water layer uw  [mm] can be 
calculated: 

uw = 4.93
u
T
exp(26.23! 5416

T
)        (42) 
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