Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 No. 2 (2014)

Theoretical Analysis and Experimental Study of Time-Varying Electric Field and Electrostatic Adhesion Force Generated by Interdigital Electrode Arrays

DOI
https://doi.org/10.15377/2409-9694.2014.01.02.5
Submitted
March 10, 2014
Published
01.07.2021

Abstract

A theoretical model is presented for the analysis of the electric field and electrostatic adhesion force produced by interdigital electrode arrays. The electric field is derived by solving the Laplace equation for the electrical potential in each subregion. The electrostatic adhesion force is calculated using the Maxwell stress tensor formulation. The dynamic properties of the electric field and electrostatic adhesion force are assessed by evaluating the transient response of the field and force under a step in applied voltages. Experimental studies are carried out to evaluate the adhesion performance of an electrode panel on a glass pane, and the experimental results verify the correctness of the theoretical model.

References

  1. Castle GSP. The evolving field of electrostatics. Institute of Physics Conference Series 1991; 118: 1 -12.
  2. Yatsuzuka K, Hatakeyama F, Asano K, Aonuma S. Fundamental characteristics of electrostatic wafer chuck with insulating sealant. IEEE Trans. Ind. Appl. 2000; 36(2): 510 - 516. http://dx.doi.org/10.1109/28.833768
  3. Asano K, Hatakeyama F, Yatsuzuka K. Fundamental study of an electrostatic chuck for silicon wafer handling. IEEE Trans Ind Appl 2002; 38: 840 -845 . http://dx.doi.org/10.1109/TIA.2002.1003438
  4. Jeop JU, Higuchi T. Electrostatic suspension of dielectrics. IEEE Trans Ind Electron 1998; 45: 938 -946. http://dx.doi.org/10.1109/41.735338
  5. Ju J, Yih TC, Higuchi T, Jeon JU. Direct electrostatic levitation and propulsion of silicon wafer handling. IEEE Trans Ind Appl 1998; 34: 975 -984. http://dx.doi.org/10.1109/28.720437
  6. Jeon JU, Park K, and Higuchi T. Contactless suspension and transportation of glass panels by electrostatic forces. Sens Actuator A -Phys 2007; 134: 565 -574. http://dx.doi.org/10.1016/j.sna.2006.05.016
  7. Green NG, Ramos A, Morgan H. Numerical solution of the dielectrophoretic and travelling wave forces for interdigitated electrode arrays using the finite element method. J Electrost 2002; 56: 235 -254. http://dx.doi.org/10.1016/S0304 -3886(02)00069 - 4
  8. Wang XJ, Wang XB, Becker FF, Gascoyne PRC. A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem. J Phys D: Appl Phys 1996; 29: 1649 -1660 . http://dx.doi.org/10.1088/0022 -3727/29/6/035
  9. Garcia M, Clague D. The 2D electric field above a planar sequence of independent strip electrodes. J Phys D: Appl Phys 2000; 33: 1747 -1755 . http://dx.doi.org/10.1088/0022 -3727/33/14/315
  10. Morgan H, Izquierdo AG, Bakewell D, Green NG, Romos A. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J Phys D: Appl Phys 2001; 34: 1553 -1561. http://dx.doi.org/10.1088/0022 -3727/34/10/316
  11. Yamamoto A, Nakashima T, Higuchi T. Wall climbing mechanisms using electrostatic attraction generated by flexible electrodes, Int. Symp. on Micro -Nano Mechatronics and Human Science 2007; 389 -394.
  12. Prahlad H, Pelrine R, Stanford S, Marlow J, Kornbluh R. Electroadhesive robots —Wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology. IEEE Int Conf on Robotics and Automation 2008; 3028 -3033.
  13. Liu R, Chen R, Shen H, Zhang R. Wall climbing robot using electrostatic adhesion force generated by flexible interdigital electrodes. Int J Adv Robot Syst 2013; 10: 1 -9.
  14. Schnelle T, Hagedorn R, Fuhr G, Fiedler S, Muller T. Three - dimensional electric field traps for manipulation of cells — calculation and experimental verification. Biochim Biophys Acta 1993; 1157: 127 -140. http://dx.doi.org/10.1016/0304 -4165(93)90056 - E
  15. Wang XB, Huang Y, Burt J P H, Markx GH, Pethig R. Selective dielectrophoretic confinement of bioparticles in potential energy wells. J Phys D: Appl Phys 1993; 26: 1278 - 1285. http://dx.doi.org/10.1088/0022 -3727/26/8/019
  16. Hughes MP, Pethig R, Wang XB. Dielectrophoretic force on particles in travelling electric fields. J Phys D: Appl Phys 1996; 29: 474 -482 . http://dx.doi.org/10.1088/0022 -3727/29/2/029
  17. Marcuse D. Electrostatic field of coplanar lines computed with the point matching method. IEEE J Quantum Electron 1989; 25: 939 -947. http://dx.doi.org/10.1109/3.27984
  18. Woo SJ, Higuchi T. Electric field and force modeling for electrostatic levitation of lossy dielectric plates. J Appl Phys 2010; 108:104906. http://dx.doi.org/10.1063/1.3487938
  19. Haus HA, Melcher JR. Electromagnetic Fields and Energy. NJ: Prentice Hall 1989.
  20. Zhang ZW. Modeling and analysis of electrostatic force for robot handling of fabric materials. IEEE-ASME Trans Mechatron 1999; 4: 39-49. http://dx.doi.org/10.1109/3516.752083
  21. Melcher R. Continuum Electromechanics. Camb-ridge MA: MIT Press 1981.