Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 2 (2015)

Ultrasonic Localization of Multiple Robots

DOI
https://doi.org/10.15377/2409-9694.2015.02.02.2
Submitted
May 10, 2015
Published
10.05.2015

Abstract

In this work, we are focused on mathematic entity of localization by trilateration. Mathematical equations are usable for localization of source of ultrasonic waves. These can be measured in plane or 3D space by microphone array. We solve step-by-step localization by two, three and four sensors. Work also contains parts about localization without microphone array. For these measurements are used only distances between robots. We discuss about usability of ultrasonic, its advantages and necessity of temperature and humidity compensation.

References

  1. David J and Cheeke N. Fundamentals and Applications of Ultrasonic Waves. CRC Press LLC, 2002 N.W. Corporate Blvd., Boca Raton, Florida 33431. ISBN 0-8493-0130-0, 2002; p. 504. http://dx.doi.org/10.1201/9781420042139
  2. Toman M. Generovanie a snímanie ultrazvukových impulzov pre meranie priestorových súradníc: dissertation work. Bratislava: SVŠT 1990; 136 p.
  3. Bucci G, Ciancetta F and Fiorucci E. A Low-Cost Ultrasonic Wind Speed and Direction Measurement System In Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International [Online
  4. Sengpiel E. Speed of sound - temperature matters, not air pressure [cited 2015 May 25
  5. Girod L, et al. A Self-Calibrating Distributed Acoustic Sensing Platform 2006 [Online
  6. Murray CJ, Erwin H and Wermter S. Robotic Sound-Source Localization and Tracking Using Interaural Time Difference and CrossCorrelation 2004 [Online
  7. Park BC, at al. Sound Source Localization Based on Audiovisual Information for Intelligent Service Robots 2007 [Online
  8. Girod L, et al. The Design and Implementation of a SelfCalibrating Distributed Acoustic Sensing Platform. In Proceedings of the 4th international conference on Embedded networked sensor systems [Online
  9. Ohtani K, Baba M and Tanii Y. An ultrasonic local positioning system using four base stations. [Online
  10. Liu H, at al. Real-time Sound Source Localization for a Mobile Robot Based on the Guided Spectral-Temporal Position Method. [Online
  11. Zhang W, Djugash J and Singh S. Parrots: A Range Measuring Sensor Network. [Online
  12. McCarthy M and Muller LH. Positioning with Independent Ultrasonic Beacons. [Online
  13. Valin MJ, at al. Robust Sound Source Localization Using a Microphone Array on a Mobile Robot. [Online
  14. Eckert J, Dressler F and German R. Sensor Network Support for Real-time Indoor Localization of Four-rotor Flying Robots. [Online
  15. Jiménez RA and Seco F. Ultrasonic Localization Methods for Accurate Positioning. [Online
  16. Saxena A. Ultrasonic Sensor Network: Target Localization with Passive Self-Localization. [Online
  17. Priyantha BN. The Cricket Indoor Location System: PhD Thesis. Massachusetts Institute of Technology, Cambridge, MA 2005; p. 199.
  18. Medina C, Segura CJ and Torre A. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy In Sensors 2013; 13: 3501-3526. doi: 10.3390/s130303501, [Online
  19. Priyantha BL. The Cricket Indoor Location System [online
  20. Wilson J. An Introduction to the Mathematics of Global Positioning [cited 2012 September 30
  21. Parisek Z, Ruzsa Z and Gordos G. Mathematical algorithms of an indoor ultrasonic localisation system [cited 2012 September 30
  22. Ratica L. Rozdelení mikrofonů [cited 2012 September 30
  23. Koníček C. Zpracovaní signálu zdigitálních mikrofonů typu MEMS: bakalárska práca. 2012. Brno: VUT v Brne, 2012. 37. s. [cited 2014 October 5
  24. Stanislavský R. Mikrofóny [cited 2014 October 5
  25. Šovčík J. Koordinácia pohybu skupiny robotov v outdoor prostredí s prekážkami: Diploma work. Bratislava: STU, 2013. 55 s.