In this work, we are focused on mathematic entity of localization by trilateration. Mathematical equations are usable for localization of source of ultrasonic waves. These can be measured in plane or 3D space by microphone array. We solve step-by-step localization by two, three and four sensors. Work also contains parts about localization without microphone array. For these measurements are used only distances between robots. We discuss about usability of ultrasonic, its advantages and necessity of temperature and humidity compensation.
References
David J and Cheeke N. Fundamentals and Applications of Ultrasonic Waves. CRC Press LLC, 2002 N.W. Corporate Blvd., Boca Raton, Florida 33431. ISBN 0-8493-0130-0, 2002; p. 504. http://dx.doi.org/10.1201/9781420042139
Toman M. Generovanie a snímanie ultrazvukových impulzov pre meranie priestorových súradníc: dissertation work. Bratislava: SVŠT 1990; 136 p.
Bucci G, Ciancetta F and Fiorucci E. A Low-Cost Ultrasonic Wind Speed and Direction Measurement System In Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE International [Online
Sengpiel E. Speed of sound - temperature matters, not air pressure [cited 2015 May 25
Girod L, et al. A Self-Calibrating Distributed Acoustic Sensing Platform 2006 [Online
Murray CJ, Erwin H and Wermter S. Robotic Sound-Source Localization and Tracking Using Interaural Time Difference and CrossCorrelation 2004 [Online
Park BC, at al. Sound Source Localization Based on Audiovisual Information for Intelligent Service Robots 2007 [Online
Girod L, et al. The Design and Implementation of a SelfCalibrating Distributed Acoustic Sensing Platform. In Proceedings of the 4th international conference on Embedded networked sensor systems [Online
Ohtani K, Baba M and Tanii Y. An ultrasonic local positioning system using four base stations. [Online
Liu H, at al. Real-time Sound Source Localization for a Mobile Robot Based on the Guided Spectral-Temporal Position Method. [Online
Zhang W, Djugash J and Singh S. Parrots: A Range Measuring Sensor Network. [Online
McCarthy M and Muller LH. Positioning with Independent Ultrasonic Beacons. [Online
Valin MJ, at al. Robust Sound Source Localization Using a Microphone Array on a Mobile Robot. [Online
Eckert J, Dressler F and German R. Sensor Network Support for Real-time Indoor Localization of Four-rotor Flying Robots. [Online
Jiménez RA and Seco F. Ultrasonic Localization Methods for Accurate Positioning. [Online
Saxena A. Ultrasonic Sensor Network: Target Localization with Passive Self-Localization. [Online
Priyantha BN. The Cricket Indoor Location System: PhD Thesis. Massachusetts Institute of Technology, Cambridge, MA 2005; p. 199.
Medina C, Segura CJ and Torre A. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy In Sensors 2013; 13: 3501-3526. doi: 10.3390/s130303501, [Online
Priyantha BL. The Cricket Indoor Location System [online
Wilson J. An Introduction to the Mathematics of Global Positioning [cited 2012 September 30
Parisek Z, Ruzsa Z and Gordos G. Mathematical algorithms of an indoor ultrasonic localisation system [cited 2012 September 30
Ratica L. Rozdelení mikrofonů [cited 2012 September 30
Koníček C. Zpracovaní signálu zdigitálních mikrofonů typu MEMS: bakalárska práca. 2012. Brno: VUT v Brne, 2012. 37. s. [cited 2014 October 5
Stanislavský R. Mikrofóny [cited 2014 October 5
Šovčík J. Koordinácia pohybu skupiny robotov v outdoor prostredí s prekážkami: Diploma work. Bratislava: STU, 2013. 55 s.