Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Modeling and Control of Underactuated Three-Dimensional Overhead Crane Systems

DOI
https://doi.org/10.31875/2409-9694.2019.06.10
Submitted
October 8, 2019
Published
08.10.2019

Abstract

Overhead crane systems play a vital role in different factories to transport heavy loads. This paper provides an overview of recent developments in the modeling and control of three-dimensional overhead crane systems. It provides a categorized survey of the published work. Different control methodologies when applied to overhead crane are examined, outlined and assessed to aid for future work.

References

  1. Alhazza K, Masoud Z, Alotaibi N. A Smooth Wave-Form Shaped Command With Flexible Maneuvering Time: Analysis And Experiments. Asian Journal of Control 2016; 1376-1384. https://doi.org/10.1002/asjc.1204
  2. Hua YJ, Shine YK. Adaptive coupling control for overhead crane systems. Mechatronics 2017; 143-152.
  3. Ma X, Bao H. An Anti-Swing Closed-Loop Control Strategy for Overhead Cranes. Applied Sciences 2018. https://doi.org/10.3390/app8091463
  4. Yakut O. Application of intelligent sliding mode control with moving sliding surface for overhead cranes. Neural Computing and Applications 2014; 1369-1379. https://doi.org/10.1007/s00521-013-1351-9
  5. Liu H, Cheng W, Li Y. Dynamic Responses of an Overhead Crane’s Beam Subjected to a Moving Trolley with a Pendulum Payload. Shock and Vibration 2019. https://doi.org/10.1155/2019/1291652
  6. Liu R, Li S, Ding S. Nested saturation control for overhead Crane Systems. Transactions of the Institute of Measurement and Control 2011; 862-875. https://doi.org/10.1177/0142331211423285
  7. Le TA, Lee S-G, Moon S-C. Partial feedback linearization and sliding mode techniques for 2D crane control. Transactions of the Institute of Measurement and Control 2014; 78-87. https://doi.org/10.1177/0142331213492369
  8. Shao X, Zhang I, Zhang X. Takagi-Sugeno Fuzzy Modeling and PSO-Based Robust LQR Anti-Swing Control for Overhead Crane. Mathematical Problems in Engineering 2019. https://doi.org/10.1155/2019/4596782
  9. Xuan RL, Van TN, Viet AL, Thuy NVT, Xuan MP. Adaptive backstepping hierarchical sliding mode control for uncertain 3D overhead crane systems. International Conference on System Science and Engineering 2017.
  10. Abdullahi AM, Mohamed Z, Selamat H, Pota HR, Abidin MZ, Ismail F, Haruna A. Adaptive output-based command shaping for sway control of a 3D overhead crane with payload hoisting and wind disturbance. Mechanical Systems and Signal Processing 2018; 157-172. https://doi.org/10.1016/j.ymssp.2017.04.034
  11. Lee H-H. Modeling and Control of a Three-Dimensional Overhead Crane. Journal of Dynamic Systems 1998. https://doi.org/10.1115/1.2801488
  12. Wang X, Liu J, Zhang Y, Shi B, Jiang D, Peng H. A unified symplectic pseudospectral method for motion planning and tracking control of 3D underactuated overhead cranes. International Journal of Robust and Nonlinear Control 2019; 2236-2253. https://doi.org/10.1002/rnc.4488
  13. Zhang M, Ma X, Rong X, Song R, Tian X, Li Y. An enhanced coupling nonlinear tracking controller for underactuated 3d overhead crane systems. Asian Journal of Control 2018; 1839-1854. https://doi.org/10.1002/asjc.1683
  14. Chang C-Y, Chiang K-H. Fuzzy projection control law and its application to the overhead crane. Mechatronics 2008; 607-615. https://doi.org/10.1016/j.mechatronics.2008.05.003
  15. Zhang M, Zhang Y, Chen H, Cheng X. Model-independent PD-SMC method with payload swing suppression for 3D overhead crane systems. Mechanical Systems and Signal Processing 2019; 381-393. https://doi.org/10.1016/j.ymssp.2019.04.046
  16. Zhang M, Ma X, Rong X, Tian X, Li Y. Nonlinear coupling control method for underactuated three-dimensional overhead crane systems under initial input constraints. Transactions of the Institute of Measurement and Control 2018; 413-424. https://doi.org/10.1177/0142331216658949
  17. Ismail RR, Ahmad M, Ramli M, Rashidi F. Nonlinear Dynamic Modelling and Analysis of a 3-D Overhead Gantry Crane System with System Parameters Variation. International Journal of Simulation.
  18. Giua A, Sanna M, Seatzu C. Observer-Controller Design for Three Dimensional Overhead Cranes Using Time-Scaling. Mathematical and Computer Modelling of Dynamical Systems 2001; 77-107. https://doi.org/10.1076/mcmd.7.1.77.3634
  19. Wu X, Xiongxiong H. Partial feedback linearization control for 3-D underactuated overhead crane systems. ISA Transactions 2016; 361-370. https://doi.org/10.1016/j.isatra.2016.06.015
  20. Chwa D. Sliding-Mode-Control-Based Robust Finite-Time Antisway Tracking Control of 3-D Overhead Cranes. IEEE Transactions on Industrial Electronics 2017; 6775-6784. https://doi.org/10.1109/TIE.2017.2701760
  21. Cho S-K, Lee H-H. A fuzzy-logic antiswing controller for three-dimensional overhead cranes. ISA Transactions 2002; 235-243. https://doi.org/10.1016/S0019-0578(07)60083-4
  22. Lee LAT-G, Kim V-HDM. Partial Feedback Linearization Control of a Three-Dimensional Overhead Crane. International Journal of Control, Automation, and Systems 2013; 718-727. https://doi.org/10.1007/s12555-012-9305-z
  23. Almutairi NB, Zribi M. Sliding Mode Control of a Three-dimensional. Journal of Vibration and Control Overhead Crane 2009; 1679-1730. https://doi.org/10.1177/1077546309105095
  24. Qian D, Yi J. Hierarchical Sliding Mode Control for Under-actuated Cranes, Springer 2016. https://doi.org/10.1007/978-3-662-48417-3
  25. Manson GA. Time-optimal control of an overhead crane model. Optimal Control Applications and Methods. Optimal Control Applications and Methods 1982; 115-120. https://doi.org/10.1002/oca.4660030202
  26. Lee H-H. A New Motion-Planning Scheme for Overhead Cranes With High-Speed Hoisting. Journal of Dynamic Systems, Measurement, and Control 2004; 359-364. https://doi.org/10.1115/1.1767855
  27. Kimiaghalam B, Homaifar A, Bikdash M, Dozier G. Genetic algorithms solution for unconstrained optimal crane control, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 1999.
  28. Lee H-H, Liang Y, Segura D. A Sliding-Mode Antiswing Trajectory Control for Overhead Cranes With High-Speed Load Hoisting. Journal of Dynamic Systems, Measurement, and Control 2006; 842-845. https://doi.org/10.1115/1.2364010
  29. Khalid A, Huey J, Singhose W, Lawrence J, Frakes D. Human Operator Performance Testing Using an Input-Shaped Bridge Crane. Journal of Dynamic Systems, Measurement, and Control 2006; 128(4): 835-841. https://doi.org/10.1115/1.2361321
  30. Cruz JJD, Leonardi F. Minimum-time anti-swing motion planning of cranes using linear programming. Optimal Control Applications and Methods 2012; 34(2): 191-201. https://doi.org/10.1002/oca.2016
  31. Sorensen KL, Singhose W, Dickerson S. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Engineering Practice 2007; 15: 825-837. https://doi.org/10.1016/j.conengprac.2006.03.005
  32. Daqaq MF, Masoud ZN. Nonlinear Input-Shaping Controller for Quay-Side Container Cranes. Nonlinear Dynamics 2006; 45: 149-170. https://doi.org/10.1007/s11071-006-2425-3
  33. Maghsoudi MJ, Mohamed Z, Sudin S, Buyamin S, Jaafar H, Ahmad S. An improved input shaping design for an efficient sway control of a nonlinear 3D overhead crane with friction. Mechanical Systems and Signal Processing 2017; 364-378. https://doi.org/10.1016/j.ymssp.2017.01.036
  34. LHH. Modelling and control of 2-dimensional overhead crane. in Proceedings of the ASME dynamic systems and control division, Dallas, USA, 1997.
  35. Tuan LA, Lee S-G, Ko DH, Nho LC. Combined control with sliding mode and partial feedback linearization for 3D overhead cranes. International Journal of Robust and Nonlinear Control 2013. https://doi.org/10.1002/rnc.3061
  36. d'AndreHa-Novel B, Coron J. Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica 2000; 36(4): 587-593. https://doi.org/10.1016/S0005-1098(99)00182-X
  37. Tsai C-C, Wu HL, Chuang K-H. Backstepping Aggregated Sliding-Mode Motion Control for Automatic 3D Overhead Cranes. Advanced Intelligent Mechatronics 2012. https://doi.org/10.1109/AIM.2012.6265973
  38. Tsai C-C, Wu HL, Chuang K-H. Intelligent sliding-mode motion control using fuzzy wavelet networks for automatic 3D overhead cranes, in Proceedings of 51st annual conference of the society of instrument and control engineers of Japan, Akita, Japan 2012.
  39. Yang JH, Yang KS. Adaptive control for 3-D overhead crane systems. in 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006. https://doi.org/10.1109/ACC.2006.1656486
  40. Vo A-H, Truong Q-T, Ngo H-Q-T, Nguyen Q-C. Nonlinear tracking control of a 3-D overhead crane with friction and payload compensations. Journal of Mechatronics, Electrical Power, and Vehicular Technology 2016; 27-34. https://doi.org/10.14203/j.mev.2016.v7.27-34
  41. Anh LV, Hai LX, Thuan VD, Trieu PV, Tuan LA, Cuong HM. Designing an Adaptive Controller for 3D Overhead Cranes using Hierarchical Sliding Mode and Neural Network. in International Conference on System Science and Engineering (ICSSE) 2018. https://doi.org/10.1109/ICSSE.2018.8520162
  42. Park M-S, Chwa D, Eom M. Adaptive Sliding-Mode Antisway Control of Uncertain Overhead Cranes With High-Speed Hoisting Motion. IEEE Transactions on Fuzzy Systems 2014; 1262-1271. https://doi.org/10.1109/TFUZZ.2013.2290139
  43. Grassin RT, et al. Robust control of a traveling crane. in Proceedings of the 1st European control conference, Grenoble, France 1991.
  44. Khatamianfar A, Savkin AV. Real-Time Robust and Optimized Control of a 3D Overhead Crane System. Sensors 2019. https://doi.org/10.3390/s19153429
  45. Ushida Y, Narita M, Ushiro T, Chen G, Takami I. Robust control for crane considering all varying parameters in the dynamics. in 11th IEEE International Conference on Control & Automation (ICCA) 2014. https://doi.org/10.1109/ICCA.2014.6871021
  46. Yang TW, O'Connor WJ. Wave Based Robust Control of a Crane System. in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 2006. https://doi.org/10.1109/IROS.2006.281997
  47. Deng J, Becerra VM. Application of constrained predictive control on a 3D crane system. in Proceedings of IEEE conference on robotics, Singapore 2004.
  48. Le V-A, Le H-X, Nguyen L, Phan M-X. An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes. International Journal of Automation and Computing 2019; 614-627. https://doi.org/10.1007/s11633-019-1174-y
  49. Lee L-H, Huang C-H, Ku S-C, Yang Z-H, Chang C-Y. Efficient Visual Feedback Method to Control a Three-Dimensional Overhead Crane. IEEE Transactions on Industrial Electronics 2014; 4073-4083. https://doi.org/10.1109/TIE.2013.2286565
  50. Chang C-Y, Chiang T-C. Overhead cranes fuzzy control design with deadzone compensation. Neural Computing and Applications 2009; 749-757. https://doi.org/10.1007/s00521-009-0264-0
  51. Park M-S, Chwa D, Hong S-K. Antisway Tracking Control of Overhead Cranes With System Uncertainty and Actuator Nonlinearity Using an Adaptive Fuzzy Sliding-Mode Control. IEEE Transactions on Industrial Electronics 2008; 3972-3984. https://doi.org/10.1109/TIE.2008.2004385
  52. Maghsoudi M, Ramli L, Sudin S, Mohamed Z, Husain A, Wahid H. Improved unity magnitude input shaping scheme for sway control of an underactuated 3D overhead crane with hoisting. Mechanical Systems and Signal Processing 2019; 466-482. https://doi.org/10.1016/j.ymssp.2018.12.056
  53. Diantong L, Jianqiaug Y, Mi T. Proposal of GA-based two-stage fuzzy control of over-head crane. in roceedings of 2002 IEEE region 10 conference on computer, communications, control and power engineering, Beijing, China 2002.