Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

IoT-Based System Monitoring of the Sleep Environment - A Study Aimed at the Elderly 

DOI
https://doi.org/10.31875/2409-9694.2020.07.1
Published
16.11.2020

Abstract

The aging process in our population can cause changes in people’s sleeping patterns, more specifically in the elderly, by impairing their cognitive abilities, quality of life, and autonomy. Advances in Ubiquitous Computing and Internet of Things have contributed to the monitoring of such situations. In particular, the use of sensors to evaluate the environment and aspects related to the health and well-being of individuals, as well as providing event alerts. The main objective of this experiment is to propose a monitoring system based on both the responses of multiple sensors (brightness, microphone, accelerometer, and gyroscope) at runtime to classify the environment for elderly people’s sleep quality. The results show that using embedded devices, and capturing environmental aspects through sensors, can develop solutions that offer more safety and comfort to the individuals’ sleep quality environment.

References

  1. Colin DM, Gretchen AS, Ties B, Richard AW, Martin IT. Causes of international increases in older age life expectancy. The Lancet 2015; 385(9967): 540-548. https://doi.org/10.1016/S0140-6736(14)60569-9
  2. Mano L, Funes M, Volpato T, Neto J. Explorando tecnologias de IoT no contexto de Health Smart Home: uma abordagem para detecção de quedas em pessoas idosas. Journal of Ambient Intelligence and Humanized Computing 2016a; 2(1): 46-57. https://doi.org/10.26729/jadi.v2i1.1667
  3. Oliveira RN, Roth V, Henzen AF, Simao JM, Nohama P, Wille ECG. Notification oriented paradigm applied to ambient assisted living tool. IEEE Latin America Transactions 2018; 16(2): 647-653. https://doi.org/10.1109/TLA.2018.8327425
  4. Mano LY, Faiçal BS, Nakamura LHV, Gomes PH, et al. Exploiting IoT technologies for enhancing Health Smart Homes through patient identification and emotion recognition. Computer Communications 2016b; 89: 178-190. https://doi.org/10.1016/j.comcom.2016.03.010
  5. Mano LY, Faiçal BS, Vincius PG, Pessin G, et al. An intelligent and generic approach for detecting human emotions: a case study with facial expressions. Soft Computing 2019. https://doi.org/10.1007/s00500-019-04411-7
  6. Rialle V, Duchene F, Noury N, Bajolle L, Demongeot J. Health "smart" home: information technology for patients at home. Telemedicine Journal and E-Health 2002; 8(4): 395- 409. https://doi.org/10.1089/15305620260507530
  7. Silva V, Ferreira V, Viana NS. Architecture for Integrating Healthcare Services to the Brazilian Digital TV System. IEEE Latin America Transactions 2015; 13(1): 241-249. https://doi.org/10.1109/TLA.2015.7040654
  8. Dohr A, Modre-Opsrian R, Drobics M, Hayn D, Schreier G. The internet of things for ambient assisted living. In: 2010 seventh international conference on information technology: new generations, 2010; pp. 804-809. https://doi.org/10.1109/ITNG.2010.104
  9. Kronbauer AH, da Luz HC, Campos J. Mobile Security Monitor: A Wearable Computing Platform to Detect and Notify Falls. IEEE Latin America Transactions 2018; 16(3): 957-965. https://doi.org/10.1109/TLA.2018.8358679
  10. Mano LY, Barros VA, Nunes LH, Sawada LO, et al. ENLACE: A Combination of Layer-Based Architecture and Wireless Communication for Emotion Monitoring in Healthcare. Mobile Information Systems 2019. https://doi.org/10.1155/2019/7329187
  11. Perera C, Zaslavsky A, Christen P, Georgakopoulos D. Context aware computing for the internet of things: A survey. IEEE communications surveys & tutorials 2013; 16(1): 414- 454. https://doi.org/10.1109/SURV.2013.042313.00197
  12. Ancoli-Israel S, Poceta JS, Stepnowsky C, Martin J, Gehrman P. Identification and treatment of sleep problems in the elderly. Sleep medicine reviews 1997; 1(1): 3-17. https://doi.org/10.1016/S1087-0792(97)90002-2
  13. Ancoli-Israel S, Alessi C. Sleep and aging. The American Journal of Geriatric Psychiatry 2005; 13(5): 341-343. https://doi.org/10.1097/00019442-200505000-00001
  14. Ceolim MF, Diogo MJD, Cintra FA. Qualidade do sono de pessoas idosas atendidas no grupo de atençäo à saúde do idoso do Hospital das Clnicas da Universidade Estadual de Campinas. Nursing (Säo Paulo) 2001; 4(33): 25-9. https://doi.org/10.1109/SURV.2013.042313.00197
  15. Van Der Loos, HFM, Ullrich N, Kobayashi H. Development of sensate and robotic bed technologies for vital signs monitoring and sleep quality improvement. Autonomous Robots 2003; 15(1): 67-79. https://doi.org/10.1023/A:1024444917917
  16. Chung WY, Oh SJ. Remote monitoring system with wireless sensors module for room environment. Sensors and Actuators B: Chemical 2006; 113(1): 64-70. https://doi.org/10.1016/j.snb.2005.02.023
  17. Carvalho ST, Erthal M, Mareli D, Sztajnberg A, et al. Monitoramento remoto de pacientes em ambiente domiciliar. XXVIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribudos-Salao de Ferramentas, Gramado, RS, Brasil, 2010; pp. 1005-1012.
  18. Togeiro SM, Smith AK. Diagnostics methods for sleep disorders. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999) 2005; 27: 8-15. https://doi.org/10.1590/S1516-44462005000500003
  19. Campbell A, Choudhury T. From smart to cognitive phones. IEEE Pervasive Computing 2012; 11(3): 7-11. https://doi.org/10.1109/MPRV.2012.41
  20. Yao KW, Yu S, Cheng SP, Chen IJ. Relationships between personal, depression and social network factors and sleep quality in community-dwelling older adults. Journal of Nursing Research 2008; 16(2): 131-139. https://doi.org/10.1097/01.JNR.0000387298.37419.ff
  21. Horsten S, Reinke L, Absalom AR, Tulleken JE. Systematic review of the effects of intensive-care-unit noise on sleep of healthy subjects and the critically ill. British journal of anaesthesia 2018; 120(3): 443-452. https://doi.org/10.1016/j.bja.2017.09.006