Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

Stabilizing a Class of Switched Nonholonomic Mechanical Systems

DOI
https://doi.org/10.31875/2409-9694.2020.07.2
Submitted
November 16, 2020
Published
16.11.2020

Abstract

Structurally reconfigurable or variant robot systems can provide better mobility and environmental adaptability. In this paper it is shown that a class of nonholonomic constraints robot systems can be changed to a class of special linear time varying (LTV) systems, and by applying switching control strategy the control singular problems of nonholonomic systems caused by the local coordinates can be overcome, and provides a flexible approach of optimal motion planning for mobile robotic systems. For variant robot systems with switched discontinuous dynamics, it is shown that the switching control approaches can be used to stabilize a class of switched heterogeneous nonholonomic systems. Some numerical simulation results also demonstrate the effectiveness of the control strategy proposed in this paper.

References

  1. Morales R, Feliu V, González A. Optimized obstacle avoidance trajectory generation for a reconfigurable staircase climbing wheelchair. Robotics and Autonomous Systems, 2010; 58(1): 97-114.
  2. Shi YY, Elara MR, Le AV, Prabakaran V, Wood KL. Path tracking control of self-reconfigurable robot hTetro with four differential drive units. IEEE Robotics and Automation Letters, 2020; 5(3): 3998-4005.
  3. Yu M, Liu Y, Zhang Y, Zhao G, Yu C, Shi Y. Interactions with reconfigurable modular robots enhance spatial reasoning performance. IEEE Transactions on Cognitive and Developmental Systems, 2020; 12(2): 300-310.
  4. Djemai M, Defoort M. Hybrid dynamical systems: observation and control. New York: Springer-Verlag, 2015.
  5. Liberzon D, Morse AS. Basic problems in stability and design of switched systems. IEEE control systems magazine, 1999; 19(5): 59-70.
  6. Lu W, Zhu PP, Ferrari S. A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems. IEEE Transactions on Automatic Control, 2016; 61(10): 3203-3208.
  7. Hai Lin, and Panos J. Antsaklis, Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results, IEEE Transactions on Automatic Control, 2009; 54(2): 308-322.
  8. Berger G, Jungers RM. Quantized Stabilization of Continuous-Time Switched Linear Systems, IEEE Control Systems Letters, 2021; 5(1): 319-324.
  9. Yang H, Jiang B, Cocquempot V. Stabilization of Switched Nonlinear Systems with Unstable Modes. London: Springer, 2014.
  10. Brockett RW. Asymptotic Stability and Feedback Stabilization, in Differential Geometric Control Theory. Progress in Mathematics, 1983; 27(1): 181-191.
  11. Bloch AM, Drakunov SV. Stabilization and tracking in the nonholonomic integrator via sliding modes. Systems and Control Letters, 1996; 29(2): 91-99.
  12. Hu Y, Ge SS, Su C. Stabilization of uncertain nonholonomic systems via time-varying sliding mode control. IEEE Transactions on Automatic Control, 2004; 49(5): 757-763.
  13. Astolfi A. Discontinuous of nonholonomic systems. System and Control Letter, 1996; 27(1): 37-45.
  14. Reyhanoglu M. Exponential stabilization of an underactuated autonomous surface vessel. Automatica, 1997; 33(12): 2249- 2254.
  15. Banavar RN, Sankaranarayanan V. Switched finite time control of a class of underactuated systems. Berlin: Springer, 2006.
  16. Hespanha JP, Morse AS. Stabilization of nonholonomic integrators via logic-based switching. Automatica, 1999; 35(3): 385-393.
  17. Li Z, Gao W, Goh C, Yuan M, Teoh EK. Asymptotic stabilization of nonholonomic robots leveraging singularity. IEEE Robotics and Automation Letters, 2019; 4(1): 41-48.
  18. Flasskamp K, Ansari AR, Murphey TD. Hybrid control for tracking of invariant manifolds. Nonlinear Analysis-Hybrid Systems, 2017; 25: 298-311.
  19. Li Z, Gao W, Goh C, Yuan M, et al. Asymptotic stabilization of nonholonomic robots leveraging singularit. IEEE Robotics and Automation Letter, 2019; 4(1): 41-48.
  20. Nakamura N, Nakamura H, Yamashita Y, Nishitani H. Homogeneous stabilization for input affine homogeneous systems. IEEE Transactions on Automatic Control, 2009; 54(9): 2271-2275.
  21. Zhai C, Liu Y, Luo F. A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints. IEEE Transactions on Intelligent Transportation Systems, 2019; 20(5): 1883-1896.
  22. Xu WL, Ma BL. Stabilization of second-order nonholonomic systems in canonical chained form. Robotics and Autonomous Systems, 2001; 34(4): 223-233.
  23. Tian YP, Li S. Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control. Automatica, 2002; 38(7): 1139-1146.
  24. Slotine JJE, Li W. Applied nonlinear control. London: Prentice-Hall International (UK) Limited, 1991.
  25. Hartman P. Ordinary differential equations. Second Edition, Boston: Birkhauser, 1982.
  26. Bloch AM. Nonholonomic mechanics and control. Second Edition, New York: Springer-Verlag, 2015.
  27. Murray RM, Shankar Sastry S. Nonholonomic motion planning: steering using sinusoids. IEEE Transactions on Automatic Control, 1993; 38(5): 700-716.
  28. Roza A, Maggiore M, Scardovi L. Local and Distributed Rendezvous of Underactuated Rigid Bodies. IEEE Transactions on Automatic Control, 2017; 62(8): 3835-3847.
  29. He G, Zhang C, Sun W, Geng Z. Stabilizing the second-order nonholonomic systems with chained form by finite-time stabilizing controllers. Robotica, 2016; 34(10): 2344-2367.
  30. Su TT, Liang X, He GP, Jia T, Zhao Q, Zhao L. Dynamics and switching control of a class of underactuated mechanical systems with variant constraints. Applied Sciences, 2019; 9(20): 4235.
  31. Lantos B, Márton L. Nonlinear Control of Vehicles and Robots. London: Springer, 2011.