Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 8 (2021)

Electrical Transport and Current Conduction Mechanisms in ZnO/Si Heterojunction Diode

DOI
https://doi.org/10.31875/2409-9694.2021.08.6
Published
30.12.2021

Abstract

Abstract: The objective of this research is the relevant equations of electrical transport inside a junction device based on metallic oxides like zinc oxides retained on silicon substrate by spray pyrolysis process. Many characteristics, such as the heterojunction diode's non-ideal conduct, electronic conduction of electrons and gaps in the conduction and valence bands, charge carriers caught by trap centers, hopping conduction, and tunnel effect, are used in various conduction processes at electronic junctions. Poole-Frenkel (PF) emission, Schottky emissions, and trap aided tunneling are some of the other conduction mechanisms examined inside forward/reverse bias for ZnO/Si heterojunctions (TAT). This article also confirms, addresses, and elucidates the effect of temperature on the I-V properties of ZnO/Si.

https://ecee.colorado.edu/~bart/book/book/chapter3/ch3_9.htm

References

  1. Handan Aydın, Fahrettin Yakuphanoglu, Cihat Aydın, Journal of Alloys and Compounds 2019; 773(30): 802-811 https://doi.org/10.1016/j.jallcom.2018.09.327
  2. M. Benhaliliba, Optik 2021; 241: 167197. https://doi.org/10.1016/j.ijleo.2021.167197
  3. XY. Zhang, RX. Xu, XY. Gao, M. Li, X.N. Shi, YD. Ji, FJ. Qian, JY. Fan, HY. Wang, WW. Li, H. Yang, Applied Surface Science 2020; 516(30): 146093. https://doi.org/10.1016/j.apsusc.2020.146093
  4. Giacomo Buccella, Davide Ceresoli, Andrea Villa, Luca Barbieri, Roberto Malgesini, Materials Chemistry and Physics 2021; 263(15): 124268. https://doi.org/10.1016/j.matchemphys.2021.124268
  5. Wenchang Zhou, Dongbin Qian, Jie Yang, Xinwen Ma, International Journal of Mass Spectrometry 2021; 462: 116516. https://doi.org/10.1016/j.ijms.2020.116516
  6. Susumu Ohki, Hiroki Funato, Michihiko Suhara, Tsugunori Okumura, Lars-Erik Wernersson, Werner Seifert, Applied Surface Science 2002; 190: 288-293. https://doi.org/10.1016/S0169-4332(01)00870-4
  7. AN. Banerjee, R. Maity, S. Kundoo, and KK. Chattopadhyay, Poole-Frenkel effect in nanocrystalline SnO2:F thin films prepared by a sol-gel dip-coating technique phys. stat. sol. (a) 2004; 201(5): 983-989. https://doi.org/10.1002/pssa.200306766
  8. Manisha Tyagi, Monika Tomar, Vinay Gupta Materials Research Bulletin 2015; 66: 123-131. https://doi.org/10.1016/j.materresbull.2015.02.015
  9. Takuya Ogawa, Don-Chan Cho, Kazue Kaneko, Tatsuo Mori, Teruyoshi Mizutani, Thin Solid Films 2003; 438-439: 171-176. https://doi.org/10.1016/S0040-6090(03)00729-6
  10. B. Tatar, AE. Bulgurcuoglu, P. Gökdemir, P. Aydogan, D. Yılmazer, O. Özdemir, K.Kutlu, Int. J. Hydrogen Energy 2009; 34: 5208. https://doi.org/10.1016/j.ijhydene.2008.10.040
  11. Jingxian Liang, Longkun Lai, Zhaokun Zhou, Jing Zhang, Jie Zhang, Jin Xu, Yipeng Zhang, Xinyu Liu, Weijun Luo, Solid-State Electronics 2019; 160: 107622. https://doi.org/10.1016/j.sse.2019.107622
  12. I. Jabbari, M. Baira, H. Maaref, R. Mghaieth, Solid State Communications, 2020; 314-315: 113920. https://doi.org/10.1016/j.ssc.2020.113920
  13. KK. Ng, SM. Sze, Physics of Semiconductor Devices, third ed, John Wiley & Sons, New Jersey, (2007).
  14. HC. Card, "Tunnelling MIS Structures," Inst. Phys. Con J Sex, 1980; 50: 140.
  15. J. Frenkel, "On the Theory of Electric Breakdown of Dielectrics and Electronic Semiconductors," Tech. Phys. USSR, 1938; 5: 685; "On Pre-Breakdown Phenomena in Insulators and Electronic Semiconductors," Phys. Rev. 1938; 54: 647. https://doi.org/10.1103/PhysRev.54.647
  16. KL. Chopra, in: Thin Film Phenomenon (McGraw-Hill, New York, 1969), p. 506.
  17. H. Zhang, EJ. Miller, ET. Yu, Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/ GaN grown by molecular beam epitaxy. J. Appl. Phys. 2006; 99: 023703. https://doi.org/10.1063/1.2159547
  18. JR. Yeargan, HL. Taylor, The Poole-Frenkel effect with compensation present. J. Appl. Phys. 1968; 39: 12. https://doi.org/10.1063/1.1656022
  19. SE. Meftah, M. Benhaliliba, M. Kaleli, CE. Benouis, CA. Yavru, AB. Bayram, Physica B: Condensed Matter 2020; 593(15): 412238 https://doi.org/10.1016/j.physb.2020.412238
  20. VL. Rideout, "A Review of the Theory and Technology for Ohmic Contacts to Group 111-V Compound Semiconductors," Solid-State Electron, 1975; 18: 54 1. https://doi.org/10.1016/0038-1101(75)90031-3
  21. JP. Colinge, CA. Colinge ISBN-13: 978-0387285238Springer; 2002nd edition (October 3, 2005).
  22. AM. Katzenmeyer, F. Léonard, AA. Talin, PS. Wong, and DL. Huffaker, Nano Lett. 2010; 10: 4935. https://doi.org/10.1021/nl102958g
  23. JG. Simmons, Phys. Rev. 155, 657 (1967) J. G. Simmons, Phys. Rev. 1967; 155: 657. https://doi.org/10.1103/PhysRev.155.657
  24. M. El-Samanoudy, Applied Surface Science 207, 219 (2003) M. El-Samanoudy, Applied Surface Science 2003; 207, 219. https://doi.org/10.1016/S0169-4332(02)01365-X
  25. Z. Imran, M. Rafiq, and M. Hasan, AIP Advances 44, 067137 (2014). 22 K. https://doi.org/10.1063/1.4885462
  26. Hayat, M. Rafiq, A. ur Rahman, AA. Khan, and M. Hasan, Progress in Natural Science: Materials International 2013; 23: 388. https://doi.org/10.1016/j.pnsc.2013.06.016
  27. A. Pal and P. Khare, Journal of Electrostatics 2013; 71: 976. https://doi.org/10.1016/j.elstat.2013.09.005
  28. MM. El- Nahass, MM. Abd El-Raheem, AA. Atta, AM. Hassanien, Radiat. Phys. Chem. 2014; 103: 227. https://doi.org/10.1016/j.radphyschem.2014.05.055
  29. MM. El-Nahassa, AAM. Farag, Mossad El-Metwally, F.S.H. Abu Samaha, Eman Elesh, Synth. Met 2014; 195: 110. https://doi.org/10.1016/j.synthmet.2014.05.013