Abstract: Since, Dual Metal Gate (DMG) technology alone is not enough to rectify the problem of low ON current and large ambipolar current in the TFET, therefore, a novel TFET structure, known as dual metal triple-gate-dielectric (DM_TGD) TFET, has been proposed. We have combined the dielectric and gate material work function engineering to enhance the performance of the conventional FET. In the proposed structure, the gate region is divided into three dielectric materials: TiO2/Al2O3/SiO2. This approach is chosen because high dielectric material alone near the source cannot improve the performance due to increase in fringing fields. This paper presents the detail processing of the proposed structure. We have evaluated and optimized the dc performance of the proposed N-DM_TGD TFET with the help of 2-D ATLAS simulator. The results were compared with those exhibited by dual metal hetero-gate-dielectric TFET, single metal hetero- gate-dielectric TFET and single metal triple-gate-dielectric TFET of identical dimensions. It has been observed that the DM_TGD device offers better transconductance (gm), lower subthreshold slope, lower ambipolar current and larger ON current.