Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Advanced Control Subsystem for Mobile Robotic Systems in Precision Agriculture

DOI
https://doi.org/10.31875/2409-9694.2022.09.02
Published
21.08.2022

Abstract

Abstract: This concept paper presents Mobile Agricultural Robots (MARs) for the development of precision agriculture and implicitly the smart farms through knowledge, reason, technology, interaction, learning and validation. Finding new strategies and control algorithms for MARs has led to the design of an Autonomous Robotic Platform Weed Control (ARoPWeC). The paradigm of this concept is based on the integration of intelligent agricultural subsystems into mobile robotic platforms. For maintenance activities in case of hoeing crops (corn, potatoes, vegetables, vineyards), ARoPWeC benefits from the automatic guidance subsystem and spectral analysis subsystem for differentiation and classification of the weeds. The elimination of weeds and pests is done through the Drop-on-Demand spray subsystem with multi-objective control, and for increasing efficiency through the Deep Learning subsystem.

References

  1. Amend S, Brandt D, Di Marco D. et al., 2019. Weed Management of the Future. Künstliche Intelligenz (2019) 33: 411-415. https://doi.org/10.1007/s13218-019-00617-x
  2. Azimi Mahmud MS, Zainal Abidin MS, Mohamed, Z. et al. 2019. Multi-Objective Path Planner for an Agricultural Mobile Robot in a Virtual Greenhouse Environment. Computers and Electronics in Agriculture. 157. 488-499. https://doi.org/10.1016/j.compag.2019.01.016
  3. McAllister W, Osipychev D, Davis A, Chowdhary G. 2019.Agbots: Weeding a field with a team of autonomous robots. Computers and Electronics in Agriculture. 163. 104827. https://doi.org/10.1016/j.compag.2019.05.036
  4. Liu Y, Zhang W, Pan S, Li Y, Chen Y.2020. Analyzing the robotic behavior in a smart city with deep enforcement and imitation learning using IoRT. Computer Communications 150 (2020) 346-356. https://doi.org/10.1016/j.comcom.2019.11.031
  5. Kostavelis I, Gasteratos A. 2015. Semantic mapping for mobile robotics tasks: A survey. Robotics and Autonomous Systems 66 (2015) 86-103. https://doi.org/10.1016/j.robot.2014.12.006
  6. Aliev K, Antonelli D, Bruno G. 2019. Task-based Programming and Sequence Planning for Human-Robot Collaborative Assembly. IFAC-Papers On Line. 52. 1638-1643. https://doi.org/10.1016/j.ifacol.2019.11.435
  7. Knoll F, Czymmek V, Harders L, Hussmann S. 2019.Real-time classification of weeds in organic carrot production using deep learning algorithms. Computers and Electronics in Agriculture. 167. 105097. https://doi.org/10.1016/j.compag.2019.105097
  8. Liu B, Bruch R. 2020. Weed Detection for Selective Spraying: A Review. Current Robotics Reports. https://doi.org/10.1007/s43154-020-00001-w
  9. Kamata T, Roshanianfard A, Noguchi N. 2018.Heavy-weight Crop Harvesting Robot - Controlling Algorithm. IFAC-PapersOnline. 51. 244-249. https://doi.org/10.1016/j.ifacol.2018.08.165
  10. Inoue K, Kaizu Y, Igarashi S, Imou K. 2019. The development of autonomous navigation and obstacle avoidance for a robotic mower using machine vision technique. IFAC-Papers On Line. 52. 173-177. https://doi.org/10.1016/j.ifacol.2019.12.517
  11. Fortunati L, Cavallo F, Sarrica M. 2018. Multiple Communication Roles in Human-Robot Interactions in Public Space. International Journal of Social Robotics. https://doi.org/10.1007/s12369-018-0509-0
  12. Tiddi I, Bastianelli E, Daga E, d'Aquin M, Motta E. 2019. Robot-City Interaction: Mapping the Research Landscape-A Survey of the Interactions Between Robots and Modern Cities. International Journal of Social Robotics. https://doi.org/10.1007/s12369-019-00534-x
  13. Raja R, Slaughter D, Fennimore S. et al. 2019. Crop signaling: A novel crop recognition technique for robotic weed control. Biosystems Engineering. 187. 278-291. https://doi.org/10.1016/j.biosystemseng.2019.09.011
  14. Utstumo T, Urdal F, Brevik A. et al. 2018.Robotic in-row weed control in vegetables. Computers and Electronics in Agriculture. 154. 36-45. https://doi.org/10.1016/j.compag.2018.08.043
  15. Pandelea M, Vladareanu L, Cretu D, Iliescu M. 2018. Study on the importance and role of artificial intelligence in precision agriculture. Scientific works. I/vol. IV. Agora Publishing. ISSN 2457-4449.
  16. Vladareanu V, Cononovici SB, Munteanu MS, Wang H, Moisescu M, Feng Y, Pandelea M. 2017. Modelling and simulation of humanoid robot walk with environment adaptive loads. Acta Electrotehnica, Vol. 58. no.1-2. pp 144-151. ISSN 2344-5637.
  17. Pandelea M, Vladareanu L, Iliescu M, Munteanu RI, Radulescu M. 2018.Intelligent Advanced Control Strategies for Mobile Autonomous Robots Stability Through Versatile, Intelligent, Portable VIPRO Platform. ICMSAV. COMAT. eMECH. Transilvania University Press of Brasov. ISSN 2457-8541.
  18. Vladareanu L, Pandelea M, Vladareanu V, et al. 2019. Improving anthropomorphic robot stability using advanced intelligent control interfaces. Periodicals of Engineering and Natural Sciences. Vol. 7, No. 1, June 2019. pp. 349-355. ISSN 2303-4521. https://doi.org/10.21533/pen.v7i1.339
  19. Pandelea M, Vladareanu L, Iliescu M, Frent Radu C. 2019. Anthropomorphic Walking Robots Integration in Smart Green Systems. SMARTGREENS 2019.8th International Conference on Smart Cities and Green ICT Systems.Conference Paper. Modelling Practical Paradigms of Green Manufacturing Systems - MoMa-GreenSys. https://doi.org/10.5220/0007828402260233
  20. Vladareanu L, Vladareanu V, Melinte O, Radulescu M, Pandelea M, et al. 2019. Mobile Robots Applied on Virtual and Real Environments. 22nd International Conference on Control Systems and Computer Science (CSCS). pp. 610-615. https://doi.org/10.1109/CSCS.2019.00111
  21. Gidea M, Constantinescu C, Trif A, Boasca A, Burcea M. Research into the use of image processing and automatic mapping of weeds within GIS systems. International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, SGEM 2017.Conference paper. 2017; 17(23): 641-648. https://doi.org/10.5593/sgem2017/23/S11.080
  22. Manea D, Gidea M, Marin E, Mateescu M. 2018.Simulation of mechanical parameters of sprayer boom. Engineering for Rural Development. Conference paper. 2048; 17: pp. 45-51. https://doi.org/10.22616/ERDev2018.17.N048