Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Virtual Sensor Design for Linear and Nonlinear Dynamic Systems

DOI
https://doi.org/10.31875/2409-9694.2022.09.10
Submitted
December 5, 2022
Published
05.12.2022

Abstract

Abstract: The problem of virtual sensors design in linear and nonlinear systems is studied. The problems is solved in three steps: at the first step, the linear model invariant with respect to the disturbance is designed; at the second step, a possibility to take into account the nonlinear term and to estimate the given variable is checked; finally, stability of the observer is achieved. The relations allowing to design virtual sensor of minimal dimension estimating prescribed component of the state vector of the system are obtained. The theoretical results are illustrated by practical example.

References

  1. Ahmed Q., Bhatti A. and Iqbal M., "Virtual sensors for automotive engine sensors fault diagnosis in second-order sliding modes", IEEE Sensors J. 2011; 11: 1832-1840. https://doi.org/10.1109/JSEN.2011.2105471
  2. Albertos P. and Goodwin G., "Virtual sevrors for control application", Annual Reviews in Control 2002; 26: 101-112. https://doi.org/10.1016/S1367-5788(02)80018-9
  3. Berkhoff A. and Hekman T., "Active noise control using finite element-based virtual sensors", in IEEE Int. Conf. Acoustics, Speech and Signal Processing, 2019, Brighton, UK. https://doi.org/10.1109/ICASSP.2019.8682845
  4. Blanke M., Kinnaert M., Lunze J. and Staroswiecki M., "Diagnosis and fault tolerant control" 2003, Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-05344-7
  5. Edwards C., Spurgeon S. and Patton R., "Sliding mode observers for fault detection and isolation", Automatica 2000; 36: 541-553. https://doi.org/10.1016/S0005-1098(99)00177-6
  6. Galavizh A. and Hassanabadi A., "Designing fuzzy fault tolerant controller for a DC microgrid based on virtual sensor", in 7th Int. Conf. Control, Instrumentation and Automation, 2021, Tabriz, Iran. https://doi.org/10.1109/ICCIA52082.2021.9403542
  7. Hashlamon I. and Erbatur K., "Joint sensor fault detection and recovery based on virtual sensor for walking legged robots", in IEEE 23rd Int. Symp. Industrial Electronics, 2014, Istanbul, Turkey, 1210-1204. https://doi.org/10.1109/ISIE.2014.6864786
  8. Heredia G. and Ollero A., "Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft", Sensors 2010; 10: 2188-2201. https://doi.org/10.3390/s100302188
  9. Hosseinpoor Z., Arefi M., Razavi-Far R., Mozafari N. and Hazbavi S., "Virtual sensors for fault diagnosis: a case of induction motor broken rotor bar", IEEE Sensors J. 2021; 21: 5044-5051. https://doi.org/10.1109/JSEN.2020.3033754
  10. Jove E., Casteleiro-Roca J., Quntian H., Mendez-Perez J. and Calvo-Rolle J., "Virtual sensor for fault detection, isolation and data recovery for bicomponent mixing machine monitoring", Informatica 2019; 30(4): 671-687.
  11. https://doi.org/10.15388/Informatica.2019.224
  12. Kaldmae A., Kotta U., Jiang B., Shumsky A. and Zhirabok A., "Faulty plant reconfiguration based on disturbance decoupling methods", Asian J. Control 2016; 8(3): 858-867. https://doi.org/10.1002/asjc.1185
  13. Kalsi K., Hui S. and Zak S., "Unknown input and sensor fault estimation using sliding-mode observers", in 2011 ACC, San Francisco, 2011; 1364-1369. https://doi.org/10.1109/ACC.2011.5990738
  14. Luzar M. and Witczak M., "Fault-tolerant control and diagnosis for LPV system with -infinity virtual sensor", in 3rd Conf. Control and Fault-Tolerant Systems, 2016, Barcelona, Spain, 825-830. https://doi.org/10.1109/SYSTOL.2016.7739849
  15. Misawa, E. and Hedrick, J., "Nonlinear observers - a state of the art. Survey", J. Dynamic Systems, Measurements and Control 1989; 111: 344-352. https://doi.org/10.1115/1.3153059
  16. Roy C., Roy A. and Misra S., "DIVISOR: Dynamic virtual sensor formation for overlapping region in IoT-based sensor-cloud", in 2018 IEEE Wireless Communications and Networking Conf., 2018, Barcelona, Spain. https://doi.org/10.1109/WCNC.2018.8377221
  17. Sergiyenko O., Tyrsa V., Zhirabok A. and Zuev A., "Sensor fault identification in linear and nonlinear dynamic systems via sliding mode observers," IEEE Sensors J. 2021. https://doi.org/10.1109/JSEN.2021.3080118
  18. Tan C. and Edwards C., "Sliding mode observers for robust detection and reconstruction of actuator and sensor faults", Int. J. Robust and Nonlinear Control 2003; 13: 443-463. https://doi.org/10.1002/rnc.723
  19. Trevathan J., Read W., Sattar A., Schmidtke S. and Sharp T., "The virtual sensor concept", in 2020 IEEE Sensors, 2020, Rotterdam, Netherlands.
  20. Wang Y., Rotondo D., Puig V. and Cembrano G., "Fault-tolerant control based on virtual actuator and sensor for discrete-time descriptor systems", IEEE Trans. on Circuits and Systems 2020; 67(12): 5316-5325. https://doi.org/10.1109/TCSI.2020.3015887
  21. Witczak M., "Fault diagnosis and fault tolerant control strategies for nonlinear systems", 2014, Berlin: Springer. https://doi.org/10.1007/978-3-319-03014-2
  22. Zhirabok A. and Shumsky A., "The algebraic methods for analysis of nonlinear dynamic systems", 2008, Vladivostok: Dalnauka (in Russian).
  23. Zhirabok A., Shumsky A. and Solyanik S., "Fault detection in nonlinear systems via linear methods", Int. J. Applied Math. and Computer Sciences 2017; 27: 261-72. https://doi.org/10.1515/amcs-2017-0019
  24. Zhirabok A., Zuev A. and Shumsky A., Sensor fault identification in mechatronic systems described by linear and nonlinear models" in 29th IEEE Int. Symp. on Industrial Electronics, 2020, Delft, The Netherlands, 1071-1076. https://doi.org/10.1109/ISIE45063.2020.9152578
  25. Zhirabok A., Zuev A. and Shumsky A., "Sensor fault identification in nonlinear dynamic systems", IFAC PapersOnLine 2020; 53-2: 750-755. https://doi.org/10.1016/j.ifacol.2020.12.826