Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Opposition-Based Learning Equilibrium Optimizer with Application in Mobile Robot Path Planning

DOI
https://doi.org/10.31875/2409-9694.2023.10.06
Published
22.09.2023

Abstract

Abstract: The objective of mobile robot path planning (MRPP) is to devise the shortest obstacle-free path for autonomous mobile robots based on a given terrain. Numerous MRPP methods have been extensively researched. This paper presents a novel approach called Opposition-based Learning Equilibrium Optimizer (OEO) for generating smooth paths for mobile robots. The fundamental idea behind OEO is to introduce an opposition-based learning mechanism while maintaining the overall framework of the basic EO algorithm. This modification alleviates the susceptibility of the basic EO algorithm to local optima. The OEO algorithm is employed to provide smooth paths for autonomous mobile robots, and the results are compared with several classical metaheuristic algorithms. Comparative analysis across different environments demonstrates that the proposed OEO-based path planning method consistently yields the shortest and most collision-free paths with superior stability.

References

  1. Pandelea M, Mihai G, Iliescu M, et al. Advanced Control Subsystem for Mobile Robotic Systems in Precision Agriculture [J]. International Journal of Robotics and Automation Technology, 2022, 9: 8-16. https://doi.org/10.31875/2409-9694.2022.09.02
  2. Nwanga E M, Okafor K C, Chukwudebe G A, et al. Computational Robotics: An Alternative Approach for Predicting Terrorist Networks [J]. International Journal of Robotics and Automation Technology, 2021, 8: 1-11. https://doi.org/10.31875/2409-9694.2021.08.1
  3. Wang Z, Ding H, Wang J, et al. Adaptive guided salp swarm algorithm with velocity clamping mechanism for solving optimization problems [J]. Journal of Computational Design and Engineering, 2022, 9(6): 2196-2234. https://doi.org/10.1093/jcde/qwac094
  4. Dechter R, Pearl J. Generalized best-first search strategies and the optimality of A [J]. Journal of the ACM (JACM), 1985, 32(3): 505-536. https://doi.org/10.1145/3828.3830
  5. Wayahdi M R, Ginting S H N, Syahputra D. Greedy, A-Star, and Dijkstra's algorithms in finding shortest path [J]. International Journal of Advances in Data and Information Systems, 2021, 2(1): 45-52. https://doi.org/10.25008/ijadis.v2i1.1206
  6. Erke S, Bin D, Yiming N, et al. An improved A-Star based path planning algorithm for autonomous land vehicles [J]. International Journal of Advanced Robotic Systems, 2020, 17(5): 1729881420962263. https://doi.org/10.1177/1729881420962263
  7. Karur K, Sharma N, Dharmatti C, et al. A survey of path planning algorithms for mobile robots [J]. Vehicles, 2021, 3(3): 448-468. https://doi.org/10.3390/vehicles3030027
  8. Tripathy H K, Mishra S, Thakkar H K, et al. CARE: A collision-aware mobile robot navigation in grid environment using improved breadth first search [J]. Computers & Electrical Engineering, 2021, 94: 107327. https://doi.org/10.1016/j.compeleceng.2021.107327
  9. Aggarwal S, Kumar N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges [J]. Computer Communications, 2020, 149: 270-299. https://doi.org/10.1016/j.comcom.2019.10.014
  10. Véras L G D O, Medeiros F L L, Guimaráes L N F. Systematic literature review of sampling process in rapidly-exploring random trees[J]. IEEE Access, 2019, 7: 50933-50953. https://doi.org/10.1109/ACCESS.2019.2908100
  11. Ravankar A A, Ravankar A, Emaru T, et al. HPPRM: hybrid potential based probabilistic roadmap algorithm for improved dynamic path planning of mobile robots [J]. IEEE Access, 2020, 8: 221743-221766. https://doi.org/10.1109/ACCESS.2020.3043333
  12. Das P K, Jena P K. Multi-robot path planning using improved particle swarm optimization algorithm through novel evolutionary operators [J]. Applied Soft Computing, 2020, 92: 106312. https://doi.org/10.1016/j.asoc.2020.106312
  13. Cheng K P, Mohan R E, Nhan N H K, et al. Multi-objective genetic algorithm-based autonomous path planning for hinged-tetro reconfigurable tiling robot [J]. IEEE Access, 2020, 8: 121267-121284. https://doi.org/10.1109/ACCESS.2020.3006579
  14. Ajeil F H, Ibraheem I K, Azar A T, et al. Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments [J]. Sensors, 2020, 20(7): 1880. https://doi.org/10.3390/s20071880
  15. Ding H, Liu Y, Wang Z, et al. Adaptive Guided Equilibrium Optimizer with Spiral Search Mechanism to Solve Global Optimization Problems [J]. Biomimetics, 2023, 8(5): 383. https://doi.org/10.3390/biomimetics8050383
  16. Wang Z, Ding H, Yang J, et al. Orthogonal pinhole-imaging-based learning salp swarm algorithm with self-adaptive structure for global optimization [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 1018895. https://doi.org/10.3389/fbioe.2022.1018895
  17. Liu, Y., Ding, H., Wang, Z., Jin, G., Li, B., Yang, Z., & Dhiman, G. (2023). A chaos-based adaptive equilibrium optimizer algorithm for solving global optimization problems. Mathematical Biosciences and Engineering, 20(9), 17242-17271. https://doi.org/10.3934/mbe.2023768
  18. Krell E, Sheta A, Balasubramanian A P R, et al. Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning [J]. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9. https://doi.org/10.2478/jaiscr-2019-0008
  19. Amar L B, Jasim W M. Hybrid metaheuristic approach for robot path planning in dynamic environment [J]. Bulletin of Electrical Engineering and Informatics, 2021, 10(4): 2152-2162. https://doi.org/10.11591/eei.v10i4.2836
  20. Wang Z, Ding H, Li B, et al. Energy efficient cluster based routing protocol for WSN using firefly algorithm and ant colony optimization [J]. Wireless Personal Communications, 2022, 125(3): 2167-2200. https://doi.org/10.1007/s11277-022-09651-9
  21. Kumar V, Kumar D. A systematic review on firefly algorithm: past, present, and future [J]. Archives of Computational Methods in Engineering, 2021, 28: 3269-3291. https://doi.org/10.1007/s11831-020-09498-y
  22. Wang Z, Ding H, Li B, et al. An energy efficient routing protocol based on improved artificial bee colony algorithm for wireless sensor networks [J]. ieee access, 2020, 8: 133577-133596. https://doi.org/10.1109/ACCESS.2020.3010313
  23. Akay B, Karaboga D, Gorkemli B, et al. A survey on the artificial bee colony algorithm variants for binary, integer and mixed integer programming problems [J]. Applied Soft Computing, 2021, 106: 107351. https://doi.org/10.1016/j.asoc.2021.107351
  24. Abualigah L, Shehab M, Alshinwan M, et al. Salp swarm algorithm: a comprehensive survey [J]. Neural Computing and Applications, 2020, 32: 11195-11215. https://doi.org/10.1007/s00521-019-04629-4
  25. Faramarzi A, Heidarinejad M, Stephens B, et al. Equilibrium optimizer: A novel optimization algorithm [J]. Knowledge-Based Systems, 2020, 191: 105190. https://doi.org/10.1016/j.knosys.2019.105190
  26. Ahmed S, Ghosh K K, Mirjalili S, et al. AIEOU: Automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection [J]. Knowledge-Based Systems, 2021, 228: 107283. https://doi.org/10.1016/j.knosys.2021.107283
  27. Abdel-Basset M, Mohamed R, Mirjalili S, et al. Solar photovoltaic parameter estimation using an improved equilibrium optimizer [J]. Solar Energy, 2020, 209: 694-708. https://doi.org/10.1016/j.solener.2020.09.032
  28. Abdel-Basset M, Chang V, Mohamed R. A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems [J]. Neural Computing and Applications, 2021, 33: 10685-10718. https://doi.org/10.1007/s00521-020-04820-y
  29. Dinh P H. Multi-modal medical image fusion based on equilibrium optimizer algorithm and local energy functions [J]. Applied Intelligence, 2021, 51(11): 8416-8431. https://doi.org/10.1007/s10489-021-02282-w
  30. Dai X, Long S, Zhang Z, et al. Mobile robot path planning based on ant colony algorithm with A* heuristic method [J]. Frontiers in neurorobotics, 2019, 13: 15. https://doi.org/10.3389/fnbot.2019.00015
  31. Szczepanski R, Bereit A, Tarczewski T. Efficient local path planning algorithm using artificial potential field supported by augmented reality[J]. Energies, 2021, 14(20): 6642. https://doi.org/10.3390/en14206642
  32. Qu H, Yang S X, Willms A R, et al. Real-time robot path planning based on a modified pulse-coupled neural network model [J]. IEEE Transactions on Neural Networks, 2009, 20(11): 1724-1739. https://doi.org/10.1109/TNN.2009.2029858
  33. Wang Z, Ding H, Yang Z, et al. Rank-driven salp swarm algorithm with orthogonal opposition-based learning for global optimization [J]. Applied Intelligence, 2022: 1-43.
  34. Wang Z, Ding H, Yang J, et al. Advanced orthogonal opposition‐based learning‐driven dynamic salp swarm algorithm: Framework and case studies [J]. IET Control Theory & Applications, 2022, 16(10): 945-971. https://doi.org/10.1049/cth2.12277
  35. Ding H, Cao X, Wang Z, et al. Velocity clamping-assisted adaptive salp swarm algorithm: balance analysis and case studies [J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7756-7804. https://doi.org/10.3934/mbe.2022364
  36. Cui Y, Hu W, Rahmani A. Fractional-order artificial bee colony algorithm with application in robot path planning [J]. European Journal of Operational Research, 2023, 306(1): 47-64. https://doi.org/10.1016/j.ejor.2022.11.007
  37. Sahu B, Das P K, Kumar R. A modified cuckoo search algorithm implemented with SCA and PSO for multi-robot cooperation and path planning [J]. Cognitive Systems Research, 2023, 79: 24-42. https://doi.org/10.1016/j.cogsys.2023.01.005
  38. Tizhoosh HR. Opposition-based learning: a new scheme for machine intelligence. In International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06) 2005 Nov 28 (Vol. 1, pp. 695-701). IEEE.