Abstract: To address the disturbance of model uncertainty, a linear active disturbance rejection controller (LADRC) was designed for robust lateral control of unmanned all-terrain vehicle. In terms of relative motion of target node and current state, first-order lateral tracking model is established. According to the developed model, linear tracking differentiator (LTD), linear extended state observer (LESO) and linear state error feedback (LSEF) are designed in turn. LESO could observe the uncertainty of system and LSEF could compensate the uncertainty to make system robust. In order to verify the effectiveness, two typical scenarios, circle and double lane tracking, were designed for test. And the uncertainties of wheelbase and steering ratio were considered. Results illustrate that the designed LADRC can stably control the unmanned all-terrain vehicle tracking reference trajectory under both scenarios and has the advantages of small tracking error and small overshoot compared with the conventional pure tracking methods.