Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Computer-Vision Unmanned Aerial Vehicle Detection System Using YOLOv8 Architectures

DOI
https://doi.org/10.31875/2409-9694.2024.11.01
Published
22.05.2024

Abstract

Abstract: This work aims to test the performance of the you only look once version 8 (YOLOv8) model for the problem of drone detection. Drones are very slightly regulated and standards need to be established. With a robust system for detecting drones the possibilities for regulating their usage are becoming realistic. Five different sizes of the model were tested to determine the best architecture size for this problem. The results indicate high performance across all models and that each model is to be used for a specific case. Smaller models are suited for lightweight system approaches where some false identification is tolerable, while the largest models are to be used with stationary systems that require the best precision.

References

  1. Al Bataineh, A., Kaur, D., Al-khassaweneh, M., Al-sharoa, E.: Automated cnn architectural design: A simple and efficient methodology for computer vision tasks. Mathematics 11(5), 1141 (2023). https://doi.org/10.3390/math11051141
  2. Arafat, M.Y., Alam, M.M., Moh, S.: Vision-based navigation techniques for un-manned aerial vehicles: Review and challenges. Drones 7(2), 89 (2023). https://doi.org/10.3390/drones7020089
  3. Bacanin, N., Jovanovic, L., Zivkovic, M., Kandasamy, V., Antonijevic, M., Deveci, M., Strumberger, I.: Multivariate energy forecasting via metaheuristic tuned long- short term memory and gated recurrent unit neural networks. Information Sciences 642, 119122 (2023). https://doi.org/10.1016/j.ins.2023.119122
  4. Bacanin, N., Jovanovic, L., Zivkovic, M., Salb, M., Elsadai, A., Sarac, M.: De- composition aided cloud load forecasting with optimized long-short term memory networks. In: 2023 16th International Conference on Advanced Technologies, Sys- tems and Services in Telecommunications (TELSIKS). pp. 191-194. IEEE (2023). https://doi.org/10.1109/TELSIKS57806.2023.10316036
  5. Bacanin, N., Perisic, M., Jovanovic, G., Damaševičius, R., Stanisic, S., Simic, V., Zivkovic, M., Stojic, A.: The explainable potential of coupling hybridized meta- heuristics, xgboost, and shap in revealing toluene behavior in the atmosphere. Science of The Total Environment 929, 172195 (2024). https://doi.org/10.1016/j.scitotenv.2024.172195
  6. Bacanin, N., Petrovic, A., Jovanovic, L., Zivkovic, M., Zivkovic, T., Sarac, M.: Parkinson's disease induced gain freezing detection using gated recurrent units optimized by modified crayfish optimization algorithm. In: 2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI). pp. 1-8. IEEE (2024). https://doi.org/10.1109/ICMCSI61536.2024.00006
  7. Bacanin, N., Simic, V., Zivkovic, M., Alrasheedi, M., Petrovic, A.: Cloud computing load prediction by decomposition reinforced attention long short-term memory network optimized by modified particle swarm optimization algorithm. Annals of Operations Research pp. 1-34 (2023). https://doi.org/10.1007/s10479-023-05745-0
  8. Bacanin, N., Stoean, C., Markovic, D., Zivkovic, M., Rashid, T.A., Chhabra, A., Sarac, M.: Improving performance of extreme learning machine for classification challenges by modified firefly algorithm and validation on medical benchmark datasets. Multimedia Tools and Applications pp. 1-41 (2024). https://doi.org/10.1007/s11042-024-18295-9
  9. Bacanin, N., Zivkovic, M., Bezdan, T., Venkatachalam, K., Abouhawwash, M.: Modified firefly algorithm for workflow scheduling in cloud-edge environment. Neu- ral computing and applications 34(11), 9043-9068 (2022). https://doi.org/10.1007/s00521-022-06925-y
  10. Bacanin, N., Zivkovic, M., Sarac, M., Petrovic, A., Strumberger, I., Antonijevic, M., Petrovic, A., Venkatachalam, K.: A novel multiswarm firefly algorithm: An application for plant classification. In: International Conference on Intelligent and Fuzzy Systems. pp. 1007-1016. Springer (2022). https://doi.org/10.1007/978-3-031-09173-5_115
  11. Bezdan, T., Zivkovic, M., Antonijevic, M., Zivkovic, T., Bacanin, N.: Enhanced flower pollination algorithm for task scheduling in cloud computing environment. In: Machine learning for predictive analysis: proceedings of ICTIS 2020. pp. 163-171. Springer (2021). https://doi.org/10.1007/978-981-15-7106-0_16
  12. Che, C., Zheng, H., Huang, Z., Jiang, W., Liu, B.: Intelligent robotic control system based on computer vision technology. arXiv preprint arXiv:2404.01116 (2024). https://doi.org/10.54254/2755-2721/64/20241373
  13. Cuk, A., Bezdan, T., Jovanovic, L., Antonijevic, M., Stankovic, M., Simic, V., Zivkovic, M., Bacanin, N.: Tuning attention based long-short term memory neural networks for parkinson's disease detection using modified metaheuristics. Scientific Reports 14(1), 4309 (2024). https://doi.org/10.1038/s41598-024-54680-y
  14. Damaševičius, R., Jovanovic, L., Petrovic, A., Zivkovic, M., Bacanin, N., Jovanovic, D., Antonijevic, M.: Decomposition aided attention-based recurrent neural net- works for multistep ahead time-series forecasting of renewable power generation. PeerJ Computer Science 10 (2024). https://doi.org/10.7717/peerj-cs.1795
  15. Dobrojevic, M., Zivkovic, M., Chhabra, A., Sani, N.S., Bacanin, N., Amin, M.M.: Addressing internet of things security by enhanced sine cosine metaheuristics tuned hybrid machine learning model and results interpretation based on shap approach. PeerJ Computer Science 9, e1405 (2023). https://doi.org/10.7717/peerj-cs.1405
  16. military drone: drone_mil dataset. https://universe.roboflow.com/ military-drone/drone_mil-u8fqk (dec 2023), https://universe.roboflow. com/military-drone/drone{_}mil-u8fqk, visited on 2024-05-06
  17. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine 29(6), 82-97 (2012). https://doi.org/10.1109/MSP.2012.2205597
  18. Jaramillo-Hernández, J.F., Julian, V., Marco-Detchart, C., Rincón, J.A.: Appli- cation of machine vision techniques in low-cost devices to improve efficiency in precision farming. Sensors 24(3), 937 (2024). https://doi.org/10.3390/s24030937
  19. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of YOLO algorithm developments. Procedia Computer Science 199, 1066-1073 (2022). https://doi.org/10.1016/j.procs.2022.01.135
  20. Jovanovic, G., Perisic, M., Bacanin, N., Zivkovic, M., Stanisic, S., Strumberger, I., Alimpic, F., Stojic, A.: Potential of coupling metaheuristics-optimized-xgboost and shap in revealing pahs environmental fate. Toxics 11(4), 394 (2023). https://doi.org/10.3390/toxics11040394
  21. Jovanovic, L., Bacanin, N., Simic, V., Mani, J., Zivkovic, M., Sarac, M.: Optimiz- ing machine learning for space weather forecasting and event classification using modified metaheuristics. Soft Computing pp. 1-20 (2023). https://doi.org/10.1007/s00500-023-09496-9
  22. Jovanovic, L., Damaševičius, R., Matic, R., Kabiljo, M., Simic, V., Kunjadic, G., Antonijevic, M., Zivkovic, M., Bacanin, N.: Detecting parkinson's disease from shoe-mounted accelerometer sensors using convolutional neural networks optimized with modified metaheuristics. Peer J Computer Science 10, e2031 (2024). https://doi.org/10.7717/peerj-cs.2031
  23. Jovanovic, L., Jovanovic, D., Antonijevic, M., Nikolic, B., Bacanin, N., Zivkovic, M., Strumberger, I.: Improving phishing website detection using a hybrid two-level framework for feature selection and xgboost tuning. Journal of Web Engineering 22(3), 543-574 (2023). https://doi.org/10.13052/jwe1540-9589.2237
  24. Jovanovic, L., Petrovic, A., Zivkovic, T., Antonijevic, M., Bacanin, N., Zivkovic, M.: Exploring the potential of generative adversarial networks for synthetic medical data generation. In: 2023 31st Telecommunications Forum (TELFOR). pp. 1-4. IEEE (2023). https://doi.org/10.1109/TELFOR59449.2023.10372727
  25. Jovanovic, L., Zivkovic, M., Bacanin, N., Dobrojevic, M., Simic, V., Sadasivuni, K.K., Tirkolaee, E.B.: Evaluating the performance of metaheuristic-tuned weight agnostic neural networks for crop yield prediction. Neural Computing and Appli- cations pp. 1-30 (2024). https://doi.org/10.1007/s00521-024-09850-4
  26. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks 3361(10), 1995 (1995).
  27. Minic, A., Jovanovic, L., Bacanin, N., Stoean, C., Zivkovic, M., Spalevic, P., Petrovic, A., Dobrojevic, M., Stoean, R.: Applying recurrent neural networks for anomaly detection in electrocardiogram sensor data. Sensors 23(24), 9878 (2023). https://doi.org/10.3390/s23249878
  28. Nizovtseva, I., Palmin, V., Simkin, I., Starodumov, I., Mikushin, P., Nozik, A., Hamitov, T., Ivanov, S., Vikharev, S., Zinovev, A., et al.: Assessing the mass trans- fer coefficient in jet bioreactors with classical computer vision methods and neural networks algorithms. Algorithms 16(3), 125 (2023). https://doi.org/10.3390/a16030125
  29. Pavlov-Kagadejev, M., Jovanovic, L., Bacanin, N., Deveci, M., Zivkovic, M., Tuba, M., Strumberger, I., Pedrycz, W.: Optimizing long-short-term memory models via metaheuristics for decomposition aided wind energy generation forecasting. Arti- ficial Intelligence Review 57(3), 45 (2024). https://doi.org/10.1007/s10462-023-10678-y
  30. Petropoulou, A.S., van Marrewijk, B., de Zwart, F., Elings, A., Bijlaard, M., van Daalen, T., Jansen, G., Hemming, S.: Lettuce production in intelligent green- houses-3d imaging and computer vision for plant spacing decisions. Sensors 23(6), 2929 (2023). https://doi.org/10.3390/s23062929
  31. Petrovic, A., Strumberger, I., Antonijevic, M., Jovanovic, D., Mladenovic, D., Chabbra, A.: Firefly-xgboost approach for pedestrian detection. In: 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC). pp. 197-202. IEEE (2022). https://doi.org/10.1109/ZINC55034.2022.9840700
  32. Pilcevic, D., Djuric Jovicic, M., Antonijevic, M., Bacanin, N., Jovanovic, L., Zivkovic, M., Dragovic, M., Bisevac, P.: Performance evaluation of metaheuristics- tuned recurrent neural networks for electroencephalography anomaly detection. Frontiers in Physiology 14, 1267011 (2023). https://doi.org/10.3389/fphys.2023.1267011
  33. Predić, B., Jovanovic, L., Simic, V., Bacanin, N., Zivkovic, M., Spalevic, P., Budimirovic, N., Dobrojevic, M.: Cloud-load forecasting via decomposition-aided attention recurrent neural network tuned by modified particle swarm optimization. Complex & Intelligent Systems 10(2), 2249-2269 (2024). https://doi.org/10.1007/s40747-023-01265-3
  34. Ren, Y.: Intelligent vehicle violation detection system under human-computer in- teraction and computer vision. International Journal of Computational Intelligence Systems 17(1), 40 (2024). https://doi.org/10.1007/s44196-024-00427-6
  35. Salb, M., Jovanovic, L., Bacanin, N., Antonijevic, M., Zivkovic, M., Budimirovic, N., Abualigah, L.: Enhancing internet of things network security using hybrid cnn and xgboost model tuned via modified reptile search algorithm. Applied Sciences 13(23), 12687 (2023). https://doi.org/10.3390/app132312687
  36. Savanović, N., Toskovic, A., Petrovic, A., Zivkovic, M., Damaševičius, R., Jo- vanovic, L., Bacanin, N., Nikolic, B.: Intrusion detection in healthcare 4.0 internet of things systems via metaheuristics optimized machine learning. Sustainability 15(16), 12563 (2023). https://doi.org/10.3390/su151612563
  37. Smink, M., Liu, H., Döpfer, D., Lee, Y.J.: Computer vision on the edge: Individual cattle identification in real-time with readmycow system. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 7056-7065 (2024). https://doi.org/10.1109/WACV57701.2024.00690
  38. Stankovic, M., Jovanovic, L., Bacanin, N., Zivkovic, M., Antonijevic, M., Bisevac, P.: Tuned long short-term memory model for ethereum price forecasting through an arithmetic optimization algorithm. In: International Conference on Innovations in Bio-Inspired Computing and Applications. pp. 327-337. Springer (2022). https://doi.org/10.1007/978-3-031-27499-2_31
  39. Stoean, C., Zivkovic, M., Bozovic, A., Bacanin, N., Strulak-Wójcikiewicz, R., Antonijevic, M., Stoean, R.: Metaheuristic-based hyperparameter tuning for recurrent deep learning: application to the prediction of solar energy generation. Axioms 12(3), 266 (2023). https://doi.org/10.3390/axioms12030266
  40. Strumberger, I., Bacanin, N., Tuba, M.: Enhanced firefly algorithm for constrained numerical optimization. In: 2017 IEEE congress on evolutionary computation (CEC). pp. 2120-2127. IEEE (2017). https://doi.org/10.1109/CEC.2017.7969561
  41. Todorovic, M., Stanisic, N., Zivkovic, M., Bacanin, N., Simic, V., Tirkolaee, E.B.: Improving audit opinion prediction accuracy using metaheuristics-tuned xgboost algorithm with interpretable results through shap value analysis. Applied Soft Computing 149, 110955 (2023). https://doi.org/10.1016/j.asoc.2023.110955
  42. Tuba, M., Bacanin, N.: Jpeg quantization tables selection by the firefly algo- rithm. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS). pp. 153-158. IEEE (2014). https://doi.org/10.1109/ICMCS.2014.6911315
  43. Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for search. Tech. rep., Citeseer (1995).
  44. Zivkovic, M., Bacanin, N., Zivkovic, T., Strumberger, I., Tuba, E., Tuba, M.: En- hanced grey wolf algorithm for energy efficient wireless sensor networks. In: 2020 zooming innovation in consumer technologies conference (ZINC). pp. 87-92. IEEE (2020). https://doi.org/10.1109/ZINC50678.2020.9161788
  45. Zivkovic, M., Jovanovic, L., Pavlov, M., Bacanin, N., Dobrojevic, M., Salb, M.: Op- timized recurrent neural networks with attention for wind farm energy generation forecasting. In: 2023 16th International Conference on Advanced Technologies, Sys- tems and Services in Telecommunications (TELSIKS). pp. 187-190. IEEE (2023). https://doi.org/10.1109/TELSIKS57806.2023.10316047
  46. Zivkovic, M., Zivkovic, T., Venkatachalam, K., Bacanin, N.: Enhanced dragonfly algorithm adapted for wireless sensor network lifetime optimization. In: Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2020. pp. 803-817. Springer (2021). https://doi.org/10.1007/978-981-15-8530-2_63

Most read articles by the same author(s)