Abstract: This work aims to test the performance of the you only look once version 8 (YOLOv8) model for the problem of drone detection. Drones are very slightly regulated and standards need to be established. With a robust system for detecting drones the possibilities for regulating their usage are becoming realistic. Five different sizes of the model were tested to determine the best architecture size for this problem. The results indicate high performance across all models and that each model is to be used for a specific case. Smaller models are suited for lightweight system approaches where some false identification is tolerable, while the largest models are to be used with stationary systems that require the best precision.