Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Concept Design of Reproductive Worm Robot: A Natural Inheritance of C.elegans Biological Worm

DOI
https://doi.org/10.31875/2409-9694.2024.11.02
Submitted
August 21, 2024
Published
21.08.2024

Abstract

Abstract: Although research in the field of worm robotics has taken some stride in recent past, the connotation of such designs was missing the feel of biology in true sense hitherto. Design and firmware of bio-inspired robots have been attempted by several research groups globally but none of those seriously intrude different physiologoical systems of the said biological specimen. Our attempt on technology-driven ideation of the reproductive system of a celebrated biological worm, namely, Caenorhabditis elegans (C.elegans) has culminated into concept-designs of Reproductive Worm Robot. Incidentally, C.elegans is an interesting biological entity that evokes imagination and assertion to create miniature robotic systems, especially by mimicing its reproductive system. In this paper, we have reported the technological concept designs as well as part-hardware of the working prototype of representative Reproductive Worm Robots by naturally inheriting the reproductive mechanism of the biologocal C.elegans worm (notwithstanding the size effect).

References

  1. Anna Mehringer. 2017. Fabricworm: A Biologically-Inspired Robot that Demonstrates Structural Advantages of a Soft Exterior for Peristaltic Locomotion. Master’s Thesis. Department of Mechanical & Aerospace Engineering. Case Western Reserve University, USA.
  2. Ataeian M, Tegha-Dunghu J, Curtis DG, Sykes EM, Nozohourmehrabad A, Bajaj M, Cheung K, Srayko M. 2016. Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 204: 1461-1477. https://doi.org/10.1534/genetics.116.192997
  3. Banerjee RP, Srayko M. 2022. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development (Cambridge, England) 149. https://doi.org/10.1242/dev.200229
  4. Bartow, A., Kapadia, A. and Walker, I.D. 2014. A Contractor Muscle based Continuum Trunk Robot. International Journal of Systems Applications, Engineering & Development, vol. 8, pp.198-206.
  5. Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71-94. https://doi.org/10.1093/genetics/77.1.71
  6. Butler, V.J., Branicky, R., Yemini, E., Liewald, J.F., Gottschalk, A., Kerr, A.A., Chklovskii, D.B. and Schafer, W.R. 2015. A Consistent Muscle Activation Strategy Underlies Crawling and Swimming in Caenorhabditis elegans. Journal of the Royal Society Interface, vol. 12, no. 102, p. 20140963. https://doi.org/10.1098/rsif.2014.0963
  7. Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C. and Dario, P. 2011. An Octopus-Bioinspired Solution to Movement and Manipulation for Soft Robots. Bioinspiration & Biomimetics, IOP Publishing, Open Access: vol.6, no. 3, pp. 036002. https://doi.org/10.1088/1748-3182/6/3/036002
  8. Caluwaerts, K., D’Haene, M., Verstraeten, D. and Schrauwen, B. 2013. Locomotion without a Brain: Physical Reservoir Computing in Tensegrity Structures. Artificial Life, vol.19, no. 1, pp. 35-66. https://doi.org/10.1162/ARTL_a_00080
  9. Chisholm AD, Hardin J. 2005. Epidermal morphogenesis. WormBook : the online review of C elegans biology: 1-22. https://doi.org/10.1895/wormbook.1.35.1
  10. Diogo J, Bratanich A. 2014. The nematode Caenorhabditis elegans as a model to study viruses. Archives of virology159: 2843-2851. https://doi.org/10.1007/s00705-014-2168-2
  11. Dent, J.A., Smith, M.M., Vassilatis, D.K. and Avery, L. 2000. The Genetics of Ivermectin Resistance in Caenorhabditis Elegans. Proceedings of the National Academy of Sciences, vol. 97, no. 6, pp. 2674-2679. https://doi.org/10.1073/pnas.97.6.2674
  12. Eder, M., Karl, M., Knoll, A. and Riesner, S. 2014. Continuum Worm-like Robotic Mechanism with Decentral Control Architecture. Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE 2014), August 2014, pp. 866-871. https://doi.org/10.1109/CoASE.2014.6899427
  13. Guo, Z. and Mahadevan, L. 2008. Limbless Undulatory Propulsion on Land. Proceedings of the National Academy of Sciences, vol. 105, no. 9, pp. 3179-3184. https://doi.org/10.1073/pnas.0705442105
  14. Hauser, H., Ijspeert, A.J., Fuchslin, R.M., Pfeifer, R. and Maass, W. 2011. Towards a Theoretical Foundation for Morphological Computation with Compliant Bodies. Biological Cybernatics, vol.105, no. 5-6, pp. 355-370. https://doi.org/10.1007/s00422-012-0471-0
  15. Hauser, H., Ijspeert, A.J., Fuchslin, R.M., Pfeifer, R. and Maass, W. 2012. The Role of Feedback in Morphological Computation with Compliant bodies. Biological Cybernetics, vol. 106, pp. 595-613. https://doi.org/10.1007/s00422-012-0516-4
  16. He, B., Wang, Z., Li, Q., Xie, H. and Shen, R. 2013. An Analytic Method for the Kinematics and Dynamics of a Multiple-Backbone Continuum Robot. International Journal of Advanced Robotic Systems, vol. 10, no.1, Open Access, January 2013, pp. 1-13. https://doi.org/10.5772/54051
  17. Hirose, S. 1993. Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford University Press, Oxford, U.K.
  18. Hirose, S. and Yamada, H. 2009. Snake-like Robots [tutorial]. IEEE Robotics & Automation Magazine, vol. 16, no. 1, pp. 88-98. https://doi.org/10.1109/MRA.2009.932130
  19. Horner VL, Wolfner MF. 2008. Transitioning from egg to embryo: Triggers and mechanisms of egg activation. Developmental Dynamics237: 527-544. https://doi.org/10.1002/dvdy.21454
  20. Jones, B. and Walker, I. 2006. Kinematics for Multisection Continuum Robots. IEEE Transactions on Robotics, vol. 22, pp. 43-55. https://doi.org/10.1109/TRO.2005.861458
  21. Kropp PA, Bauer R, Zafra I, Graham C, Golden A. 2021. Caenorhabditis elegans for rare disease modeling and drug discovery: strategies and strengths. Disease models & mechanisms14. https://doi.org/10.1242/dmm.049010
  22. LaMunyon CW, Ward S. 1998. Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proceedings Biological sciences265: 1997-2002. https://doi.org/10.1098/rspb.1998.0531
  23. Leifer, A.M., Fang-Yen, C., Gershow, M., Alkema, M.J. and Samuel, A.D. 2011. Optogenetic Manipulation of Neural Activity in Freely Moving Caenorhabditis elegans. Nature Methods, vol. 8, no. 2, pp. 147. https://doi.org/10.1038/nmeth.1554
  24. MacLeod AR, Karn J, Brenner S. 1981. Molecular analysis of the unc-54 myosin heavy-chain gene of Caenorhabditis elegans. Nature 291: 386-390. https://doi.org/10.1038/291386a0
  25. Madl JE, Herman RK. 1979. Polyploids and sex determination in Caenorhabditis elegans. Genetics 93: 393-402. https://doi.org/10.1093/genetics/93.2.393
  26. Mahl, T., Hildebrandt, A. and Sawodny, O. 2012. Forward Kinematics of a Compliant Pneumatically Actuated Redundant Manipulator. Proceedings of the 7th. IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1267-1273. https://doi.org/10.1109/ICIEA.2012.6360917
  27. Mahl, T., Hildebrandt, A. and Sawodny, O. 2014. A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant. IEEE Transactions on Robotics vol. 30, no.4, pp. 935-949. https://doi.org/10.1109/TRO.2014.2314777
  28. Martin Eder. 2015. Compliant Modular Worm-like Robotic Mechanisms with Decentrally Controlled Fluid Actuators. Doctoral Thesis, Technische Universitat Munchen Fakultat Fur Informatik, Germany.
  29. Matthew RM, amp, amp, Andrew S. 2010. Fertilization and the oocyte-to-embryo transition in C. elegans. BMB Rep43: 389-399. https://doi.org/10.3858/BMBRep.2010.43.6.389
  30. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P. and Laschi, C. 2012. Soft-robotic arm inspired by the Octopus: II. From Artificial Requirements to Innovative Technological Solutions. Bioinspiration & Biomimetics, vol.7, no.2, pp.025005 (14pp). IOP Publishing. https://doi.org/10.1088/1748-3182/7/2/025005
  31. McGhee JD. 2007. The C. elegans intestine. WormBook: the online review of C elegans biology: 1-36. https://doi.org/10.1895/wormbook.1.133.1
  32. McNally KL, McNally FJ. 2005. Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 282: 218-230. https://doi.org/10.1016/j.ydbio.2005.03.009
  33. Melo, K., Leon, J., di Zeo, A., Rueda, V., Roa, D., Parraga, M., Gonzalez, D. and Paez, L. 2013. The Modular Snake Robot Open Project: Turning Animal Functions into Engineering Tools. Proceedings of the 11th. IEEE International Symposium on Safety Security and Rescue Robotics (SSRR 2013), pp 1-6. https://doi.org/10.1109/SSRR.2013.6719368
  34. Miller MA, Nguyen VQ, Lee MH, Kosinski M, Schedl T, Caprioli RM, Greenstein D. 2001. A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science291: 2144-2147. https://doi.org/10.1126/science.1057586
  35. Onal, C. and Rus, D. 2012. A Modular Approach to Soft Robots. Proceedings of the 4th. IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 1038-1045. https://doi.org/10.1109/BioRob.2012.6290290
  36. Page AP, Johnstone IL. 2007. The cuticle. WormBook: the online review of C elegans biology: 1-15. https://doi.org/10.1895/wormbook.1.138.1
  37. Paix A, Folkmann A, Seydoux G. 2017. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods (San Diego, Calif) 121-122: 86-93. https://doi.org/10.1016/j.ymeth.2017.03.023
  38. Palagi, S. and Fischer, P. 2018. Bioinspired Microrobots. Nature Reviews Materials, vol. 3, pp. 113-124. https://doi.org/10.1038/s41578-018-0016-9
  39. Podbilewicz B. 2006. Cell fusion. WormBook: the online review of C elegans biology: 1-32. https://doi.org/10.1895/wormbook.1.52.1
  40. Robertson S, Lin R. 2013. The oocyte-to-embryo transition. Advances in experimental medicine and biology 757: 351-372. https://doi.org/10.1007/978-1-4614-4015-4_12
  41. Rus, D. and Tolley, M.T. 2018. Design, Fabrication and Control of Origami Robots. Nature Reviews Materials, vol. 3, pp. 101-112. https://doi.org/10.1038/s41578-018-0009-8
  42. Sitti, M. 2018. Miniature Soft Robots-Road to the Clinic. Nature Reviews Materials, vol. 3, no. 6, pp. 74-75. https://doi.org/10.1038/s41578-018-0001-3
  43. Stirman, J.N., Crane, M.W., Husson, S.J., Wabnig, S., Schultheis, C., Gottschalk, A. and Lu, H. 2011. Real-time Multimodal Optical Control of Neurons and Muscles in Freely Behaving Caenorhabditis elegans. Nature Methods, vol. 8, no. 2, pp. 153-158. https://doi.org/10.1038/nmeth.1555
  44. Sulston JE, Horvitz HR. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol56: 110-156. https://doi.org/10.1016/0012-1606(77)90158-0
  45. Weize Zhang, Xianke Dong and Xinyu Liu. Switched Fuzzy-PD Control of Contact Forces in Robotic Microbiomanipulation. IEEE Transactions on Biomedical Engineering. 2017; 64(5): 1169-1177. https://doi.org/10.1109/TBME.2016.2594054
  46. Webster, R.J. and Jones, B.A. 2010. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review. The International Journal of Robotics Research, vol. 29, no.13, pp. 1661-1683. https://doi.org/10.1177/0278364910368147
  47. White JG, Southgate E, Thomson JN, Brenner S. 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci314: 1-340. https://doi.org/10.1098/rstb.1986.0056
  48. Xianke Dong. 2019. Robotic Micromaniupulation of the Nematode Worm Caenorhabditis Elegans. Doctoral Thesis. Department of Mechanical Engineering. McGill University, Canada.
  49. Xianke Dong, Pengfei Song and Xinyu Liu. 2019. An Automated Microfluidic System for Morphological Measurement and Size-Based Sorting of C. Elegans. IEEE Transactions on Nano Bio Science, vol. 18, no. 3, pp. 373-380. https://doi.org/10.1109/TNB.2019.2904009
  50. Xianke Dong, Wes Johnson, Yu Sun and Xinyu Liu. 2015. Robotic Micromanipulation of Cells and Small Organisms. Book Chapter, Emerging Tools for Micro and Nano Manipulation, Eds. Yu Sun and Xinyu Liu. Wiley VCH. https://doi.org/10.1002/9783527690237.ch14
  51. Xianke Dong, Pengfei Song and Xinyu Liu. 2015. An Automated Robotic System for High-Speed Microinjection of Caeborhabditis Elegans. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2015), May 26-30, 2015, Seattle, U.S.A. https://doi.org/10.1109/ICRA.2015.7139298
  52. Xianke Dong, Pengfei Song and Xinyu Liu,. 2015. A Microfluidic Device for Automated High-speed Microinjection of Caeborhabditis Elegans. Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), June 21-25, 2015, Anchorage, U.S.A. https://doi.org/10.1109/TRANSDUCERS.2015.7181009
  53. Xianke Dong, Pengfei Song and Xinyu Liu. 2015. A Microfludic Device for High-Speed Age Synchronization of Caenorhabditis Elegans. Proceedings of the International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), October 25-29, 2015, Gyeongju, Korea. https://doi.org/10.1109/ICRA.2015.7139298