Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 No. 1 (2022)

Synthesis of Microporous Cobalt Silicate using Organic Template Derived from 2,6-Dimethylpiperidinium Cations: A Potential Precursor for the Preparation of Double Perovskite Cobalt Materials

DOI
https://doi.org/10.31875/2410-4701.2022.09.10
Submitted
December 29, 2022
Published
2022-12-29

Abstract

Abstract: Synthesis of a microporous cobalt silicate was achieved by using 6,10-dimethyl-5-azoniaspiro[4, 5] decane bromide as structure directing agent. And physicochemical characterization was carried out using XRD, SEM, HTEM, TGA, FT-IR, BET-N2, ICP-OES and EDS. ETS-10 like structure framework was present as a competitive phase. Calcination of the cobalt silicate at 500 oC leads to a new structure. The possibility of this material be cobalt oxide was excluded since Bragg reflections at 2θ = 19.2º; 30.3º; 36.9º; 43.7º; 59.2º were absent (JCPDS#80-1538). Both the indexation of the XRD data for the calcined material which has resulted in a tetragonal unit cell (a = b = 10.39 Å and c = 12.21 Å, α = β = γ = 90°, V= 1317.4 Å3) and HTEM data indicated the cobalt silicate can be used as a precursor for the preparation of double perovskite cobalt materials.

References

  1. Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, v. 103, n. 3, p. 663-701, Mar 2003. https://doi.org/10.1021/cr020060i
  2. C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism, Microporous Mesoporous Mater. 82 (2005) 1-78. https://doi.org/10.1016/j.micromeso.2005.02.016
  3. M. Panayotova, B. Velikov, Kinetics of heavy metal ions removal by use of Natural Zeolite, J. Environ. Sci. Health, Part A. 37 (2002) 139-147. https://doi.org/10.1081/ESE-120002578
  4. M. Delkash, B. Ebrazi Bakhshayesh, H. Kazemian, Using zeolitic adsorbents to clean up special wastewater streams: a review, Microporous Mesoporous Mater. 214 (2015) 224-241. https://doi.org/10.1016/j.micromeso.2015.04.039
  5. J. Rocha, M.W. Anderson, Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides, Eur. J. Inorg. Chem. 18 (2000). https://doi.org/10.1002/(SICI)1099-0682(200005)2000:5<801::AID-EJIC801>3.0.CO;2-E
  6. J. Rocha, P. Ferreira, Z. Lin, P. Brandão, A. Ferreira, J.D. Pedrosa de Jesus, Synthesis and structural characterization of microporous yttrium and calcium silicates, J. Phys. Chem. B 102 (1998). https://doi.org/10.1021/jp9803337
  7. KUZNICKI, S. M. New crystalline titanium silicate molecular sieve zeolite with defined X-ray powder diffraction pattern, as adsorbent and catalyst: Engelhard Minerals Corp; Engelhard Corp.
  8. Rocha, J.; Anderson, M. W. Microporous titanosilicates and other novel mixed octahedral-tetrahedral framework oxides. European Journal of Inorganic Chemistry, n. 5, p. 801-818, May 2000. https://doi.org/10.1002/(SICI)1099-0682(200005)2000:5<801::AID-EJIC801>3.0.CO;2-E
  9. Rocha, J.; LIN, Z. Microporous mixed octahedral-pentahedral-tetrahedral framework silicates. Micro- and Mesoporous Mineral Phases, v. 57, p. 173-201, 2005 2005. https://doi.org/10.2138/rmg.2005.57.6
  10. Chukanov, N. V.; Pekov, I. V. Heterosilicates with tetrahedral-octahedral frameworks: Mineralogical and crystal-chemical aspects. Micro- and Mesoporous Mineral Phases, v. 57, p. 105-143, 2005 2005. https://doi.org/10.2138/rmg.2005.57.4
  11. Pekov, I. V.; Chukanov, N. V. Microporous framework silicate minerals with rare and transition elements: Minerogenetic aspects. Micro- and Mesoporous Mineral Phases, v. 57, p. 145-171, 2005 2005. https://doi.org/10.2138/rmg.2005.57.5
  12. Lee, Dong-Keun; IHM, Son-Ki. Hydrogenation of carbon monoxide over cobalt containing zeolite catalysts. Applied catalysis, v. 32, p. 85-102, 1987. https://doi.org/10.1016/S0166-9834(00)80618-1
  13. SHAMSI, Abolghasem et al. Zeolite-supported cobalt catalysts for the conversion of synthesis gas to hydrocarbon products. Industrial & engineering chemistry product research and development, v. 23, n. 4, p. 513-519, 1984. https://doi.org/10.1021/i300016a001
  14. ROSSIN, Joseph A.; Saldarriaga, Carlos; Davis, Mark E. Synthesis of cobalt containing ZSM-5. Zeolites, v. 7, n. 4, p. 295-300, 1987. https://doi.org/10.1016/0144-2449(87)90030-3
  15. Martínez-Hernández, Angel; Fuentes, Gustavo A. Redistribution of cobalt species in Co-ZSM5 during operation under wet conditions in the reduction of NO x by propane. Applied Catalysis B: Environmental, v. 57, n. 3, p. 167-174, 2005. https://doi.org/10.1016/j.apcatb.2004.10.018
  16. Martínez, Agustı́n et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, v. 220, n. 2, p. 486-499, 2003. https://doi.org/10.1016/S0021-9517(03)00289-6
  17. Rogovin, Marina; Neumann, Ronny. Silicate xerogels containing cobalt as heterogeneous catalysts for the side-chain oxidation of alkyl aromatic compounds with tert-butyl hydroperoxide. Journal of Molecular Catalysis A: Chemical, v. 138, n. 2, p. 315-318, 1999. https://doi.org/10.1016/S1381-1169(98)00207-6
  18. Backman, L. B. et al. A novel Co/SiO 2 catalyst for hydrogenation. Catalysis today, v. 43, n. 1, p. 11-19, 1998. https://doi.org/10.1016/S0920-5861(98)00132-1
  19. JONG, Sung-Jeng; CHENG, Soofin. Reduction behavior and catalytic properties of cobalt containing ZSM-5 zeolites. Applied Catalysis A: General, v. 126, n. 1, p. 51-66, 1995. https://doi.org/10.1016/0926-860X(95)00016-X
  20. Weston, Simon C.; STROHMAIER, Karl G.; VROMAN, Hilda B. Molecular sieve material, its synthesis and use. U.S. Patent n. 9,452,423, 27 set. 2016.
  21. Davis, Mark E.; TAKEWAKI, Takahiko. Molecular sieve CIT-6. U.S. Patent n. 6,521,206, 18 fev. 2003.
  22. ROTH, Wieslaw J. et al. Molecular sieve composition (EMM-10), its method of making, and use for hydrocarbon conversions. U.S. Patent n. 8,529,752, 10 set. 2013.
  23. Elomari, Saleh. Using molecular sieve SSZ-65 for reduction of oxides of nitrogen in a gas stream. U.S. Patent Application n. 10/956,276, 30 set. 2004.
  24. C.C. Pavel, D. Vuono, I.V. Asaftei, P. De Luca, N. Bilba, J.B. Nagy, A. Nastro, Study of the thermal dehydration of metal-exchange ETS-10 titanosilicate, in: J. ˇCejka, N.
  25. J.H. Choi, S.D. Kim, Y.J. Kwon, W.J. Kim, Adsorption behaviors of ETS-10 and its variant, ETAS-10 on the removal of heavy metals, Cu2+, Co2+, Mn2+ and Zn2+ from a wastewater, Micropor. Mesopor. Mat. 96 (2006) 157-167. https://doi.org/10.1016/j.micromeso.2006.03.050
  26. Z. Lin, J. Rocha, P. Brandão, A. Ferreira, A.P. Esculcas, J.D. Pedrosa de Jesus, A. Philippou, M.W. Anderson, Synthesis and structural characterization of microporous umbite, penkvilksite, and other titanosilicates, J. Phys. Chem. B 101 (1997) 7114-7120. https://doi.org/10.1021/jp971137n
  27. A.S. Paula, A. de Vasconcellos, J.A. Ellena, M. Giotto, J.G. Nery, Hydrothermal syntheses of ETS-10 like vanadosilicates using chiral organic molecules. Part I, Microporous Mesoporous Mater. 147 (2012) 30-46. https://doi.org/10.1016/j.micromeso.2011.05.028
  28. F. Mani, L. Wu, S.M. Kuznicki, A simplified method to synthesize pure vanadium silicate analogue of ETS-10, Microporous Mesoporous Mater. 177 (2013) 91-96. https://doi.org/10.1016/j.micromeso.2013.02.008
  29. F. Mani, J.A. Sawada, S.M. Kuznicki, Comparative adsorption study of EVS-10 and ETS-10, Microporous Mesoporous Mater. 204 (2015) 43-49. https://doi.org/10.1016/j.micromeso.2014.10.048
  30. F. Mani, J.A. Sawada, S.M. Kuznicki, Spontaneous formation of silver nanoparticles on the vanadium silicate EVS-10, Microporous Mesoporous Mater. 224 (2016) 208-216. https://doi.org/10.1016/j.micromeso.2015.11.032
  31. A. Altomare, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Rizzi, P. Werner, New techniques for indexing: N-TREOR in Expo, J. Appl. Cryst. (2000). 33, 1180-1186. https://doi.org/10.1107/S0021889800006427
  32. A. Eldewik, R.F. Howe, Cobalt substitution in ETS-10, Micropor. Mesopor. Mater. 48 (2001) 65-71. https://doi.org/10.1016/S1387-1811(01)00331-6
  33. A. Grimaud, K. J. May, C. E. Carlton, Y.-L. Lee, M. Risch, W. T. Hong, J. Zhou and Y. Shao-Horn, Nat. Commun., 2013, 4, 2439. https://doi.org/10.1038/ncomms3439
  34. B. Zhao, L. Zhang, D. Zhen, S. Yoo, Y. Ding, D. Chen, Y. Chen, Q. Zhang, B. Doyle, X. Xiong and M. Liu, Nat. Commun., 2017, 8, 14586. https://doi.org/10.1038/ncomms14586
  35. X. Miao, L. Wu, Y. Lin, X. Yuan, J. Zhao, W. Yan, S. Zhou and L. Shi, Chem. Commun., 2019, 55, 1442-1445. https://doi.org/10.1039/C8CC08817A
  36. Breck, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Use. Wiley and Sons: London, 1974 (reprinted R. E. Krieger: Malabar, FL, 1984). Chandrasekhar, S. Pramada, P. N, Kaolin-based zeolite Y, a precursor for cordierite ceramics, Applied Clay Science, 2004, 27, 187-198. https://doi.org/10.1016/j.clay.2004.07.001
  37. Grimaud, A., May, K., Carlton, C. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4, 2439 (2013). https://doi.org/10.1038/ncomms3439
  38. E. M. Flanigen, H. Khatami, H. Szymanski, Molecular Sieve Zeolites-I. (1974). 16, 201-229. https://doi.org/10.1021/ba-1971-0101.ch016