Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Reflections on the Potential of Applying Artificial Intelligence (AI) and Machine Learning (ML) for Screening Topical Hemostatic Agents Based on Inorganic Solids for Hemorrhage Control

DOI
https://doi.org/10.31875/2410-4701.2024.11.11
Published
2024-12-30

Abstract

Despite significant advances in medical interventions, fatal traumatic hemorrhage remains a leading cause of death worldwide. This persistent challenge has driven extensive research and development efforts aimed at creating more effective hemostatic agents to control bleeding. While most existing hemostatic agents are organic in nature, recent studies have highlighted the promising potential of mineral and synthetic inorganic materials for hemorrhage control. These materials demonstrate remarkable properties, such as rapid water adsorption from blood via their porous structures, which leads to the local concentration of proteins and cellular elements crucial for clot formation. Additionally, their negatively charged surfaces create a favorable environment for the activation of the intrinsic coagulation cascade. Although a variety of minerals and synthetic inorganic materials are currently employed as topical hemostatic agents, a vast array of emerging classes of inorganic materials remains underexplored. Many of these materials possess untapped hemostatic potential, but their properties and mechanisms for controlling bleeding are poorly understood. Moreover, synthesizing these materials with the precise characteristics required for effective hemostasis presents significant challenges. Recent advances in artificial intelligence (AI) offer a promising avenue to address these hurdles. By leveraging the growing availability of large datasets and sophisticated algorithms, AI can identify complex relationships within multidimensional systems, such as the synthesis of advanced inorganic materials. This capability is particularly critical for materials lacking well-characterized mechanisms or those with implications for hemostasis disorders, such as severe bleeding or thrombosis. AI-driven approaches could enable the design of innovative topical hemostatic agents capable of rapidly diagnosing and efficiently intervening in life-threatening situations, revolutionizing the field of hemorrhage control.

References

  1. R.L. Gruen, K. Brohi, M. Schreiber, Z.J. Balogh, V. Pitt, M. Narayan, R. V Maier, Haemorrhage control in severely injured patients, The Lancet 380 (2012) 1099-1108. https://doi.org/10.1016/S0140-6736(12)61224-0
  2. S.A. Smith, The cell‐based model of coagulation, Journal of Veterinary Emergency and Critical Care 19 (2009) 3-10. https://doi.org/10.1111/j.1476-4431.2009.00389.x
  3. R.G. Macfarlane, An Enzyme Cascade in the Blood Clotting Mechanism, and its Function as a Biochemical Amplifier, Nature 202 (1964) 498-499. https://doi.org/10.1038/202498a0
  4. E.W. Davie, O.D. Ratnoff, Waterfall Sequence for Intrinsic Blood Clotting, Science (1979) 145 (1964) 1310-1312. https://doi.org/10.1126/science.145.3638.1310
  5. J.P. Riddel, B.E. Aouizerat, C. Miaskowski, D.P. Lillicrap, Theories of blood coagulation, Journal of Pediatric Oncology Nursing 24 (2007) 123-131. https://doi.org/10.1177/1043454206298693
  6. M. Marília, L. Carlos, P. Dantas, F. De, S. Freitas, Estudo da Cascata de Coagulação Sangüínea e seus Valores de Referência, Acta Veterinaria Brasilica 1 (2007) 49-55.
  7. R.F. Franco, Fisiologia da coagulação, anticoagulação e fibrinólise, Medicina (Ribeirão Preto) 34 (2001) 229-237. https://doi.org/10.11606/issn.2176-7262.v34i3/4p229-237
  8. V. Johari, C. Loke, Brief overview of the coagulation cascade, Dis Mon 58 (2012) 421-423. https://doi.org/10.1016/j.disamonth.2012.04.004
  9. C.N. Ferreira, M. de O. Sousa, L.M.S. Dusse, M. das G. Carvalho, O novo modelo da cascata de coagulação baseado nas superfícies celulares e suas implicações, Rev Bras Hematol Hemoter 32 (2010) 416-421. https://doi.org/10.1590/S1516-84842010000500016
  10. M. Hoffman, D. Monroe, A Cell-based Model of Hemostasis, Thromb Haemost 85 (2001) 958-965. https://doi.org/10.1055/s-0037-1615947
  11. M. Hoffman, Remodeling the Blood Coagulation Cascade, J Thromb Thrombolysis 16 (2003) 17-20. https://doi.org/10.1023/B:THRO.0000014588.95061.28
  12. R.C. Becker, Cell-based models of coagulation: a paradigm in evolution, J Thromb Thrombolysis 20 (2005) 65-68. https://doi.org/10.1007/s11239-005-3118-3
  13. K. Galvez C., C. Cortes L., Thromboelastography: New concepts in haemostasis physiology and correlation with trauma associated coagulopathy, Colombian Journal of Anesthesiology 40 (2012) 224-230. https://doi.org/10.1097/01819236-201240030-00011
  14. Y. Guo, M. Wang, Q. Liu, G. Liu, S. Wang, J. Li, Recent advances in the medical applications of hemostatic materials, Theranostics 13 (2023) 161-196. https://doi.org/10.7150/thno.79639
  15. X.-F. Li, P. Lu, H.-R. Jia, G. Li, B. Zhu, X. Wang, F.-G. Wu, Emerging materials for hemostasis, Coord Chem Rev 475 (2023) 214823. https://doi.org/10.1016/j.ccr.2022.214823
  16. S. Pourshahrestani, E. Zeimaran, I. Djordjevic, N.A. Kadri, M.R. Towler, Inorganic hemostats: The state-of-the-art and recent advances, Materials Science and Engineering: C 58 (2016) 1255-1268. https://doi.org/10.1016/j.msec.2015.09.008
  17. J.B. Laurenti, G. Zazeri, A.P.R. Povinelli, M.F. de Godoy, D.M. Braile, T.R.F. da Rocha, É.A. D'Amico, J.G. Nery, Enhanced pro-coagulant hemostatic agents based on nanometric zeolites, Microporous and Mesoporous Materials 239 (2017) 263-271. https://doi.org/10.1016/j.micromeso.2016.10.020
  18. Y. Zheng, J. Wu, Y. Zhu, C. Wu, Inorganic-based biomaterials for rapid hemostasis and wound healing, Chem Sci 14 (2023) 29-53. https://doi.org/10.1039/D2SC04962G
  19. D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, R.K. Tekade, Artificial intelligence in drug discovery and development, Drug Discov Today 26 (2021) 80-93. https://doi.org/10.1016/j.drudis.2020.10.010
  20. P. Hamet, J. Tremblay, Artificial intelligence in medicine, Metabolism 69 (2017) S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011
  21. J.H. Holmes, L. Sacchi, R. Bellazzi, N. Peek, Artificial Intelligence in Medicine AIME 2015, Artif Intell Med 81 (2017) 1-2. https://doi.org/10.1016/j.artmed.2017.06.011
  22. Amisha, P. Malik, M. Pathania, V. Rathaur, Overview of artificial intelligence in medicine, J Family Med Prim Care 8 (2019) 2328. https://doi.org/10.4103/jfmpc.jfmpc_440_19
  23. M.I. Jordan, T.M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science (1979) 349 (2015) 255-260. https://doi.org/10.1126/science.aaa8415
  24. M. Moliner, Y. Román-Leshkov, A. Corma, Machine Learning Applied to Zeolite Synthesis: The Missing Link for Realizing High-Throughput Discovery, Acc Chem Res 52 (2019) 2971-2980. https://doi.org/10.1021/acs.accounts.9b00399
  25. F. Daeyaert, F. Ye, M.W. Deem, Machine-learning approach to the design of OSDAs for zeolite beta, Proceedings of the National Academy of Sciences 116 (2019) 3413-3418. https://doi.org/10.1073/pnas.1818763116
  26. S. Ma, Z.-P. Liu, Machine learning potential era of zeolite simulation, Chem Sci 13 (2022) 5055-5068. https://doi.org/10.1039/D2SC01225A
  27. X. Li, H. Han, N. Evangelou, N.J. Wichrowski, P. Lu, W. Xu, S.-J. Hwang, W. Zhao, C. Song, X. Guo, A. Bhan, I.G. Kevrekidis, M. Tsapatsis, Machine learning-assisted crystal engineering of a zeolite, Nat Commun 14 (2023) 3152. https://doi.org/10.1038/s41467-023-38738-5
  28. C. Wang, C. Shi, J. Huang, X. Wei, Y. Shi, L. Xiao, J. Fan, Synergistic Procoagulant Mechanism and Application of Kaolin-Zeolite Composite Hemostat for Effective Hemorrhage Control, ACS Appl Mater Interfaces 16 (2024) 49186-49196. https://doi.org/10.1021/acsami.4c12623
  29. Y. Li, X. Liao, X. Zhang, G. Ma, S. Zuo, L. Xiao, G.D. Stucky, Z. Wang, X. Chen, X. Shang, J. Fan, In situ generated thrombin in the protein corona of zeolites: Relevance of the functional proteins to its biological impact, Nano Res 7 (2014) 1457-1465. https://doi.org/10.1007/s12274-014-0505-0
  30. L. Yu, X. Shang, H. Chen, L. Xiao, Y. Zhu, J. Fan, A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat, Nat Commun 10 (2019) 1932. https://doi.org/10.1038/s41467-019-09849-9
  31. J. Wang, H. Zhang, J. Wang, F. Pan, H. Zhang, J. Luo, C. Guo, K. Li, T. Li, Efficacy of New Zeolite-Based Hemostatic Gauze in a Gunshot Model of Junctional Femoral Artery Hemorrhage in Swine, Journal of Surgical Research 263 (2021) 176-185. https://doi.org/10.1016/j.jss.2020.12.040
  32. A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon, E.D. Cubuk, Scaling deep learning for materials discovery, Nature 624 (2023) 80-85. https://doi.org/10.1038/s41586-023-06735-9
  33. A. Pihlajamäki, M.F. Matus, S. Malola, H. Häkkinen, GraphBNC: Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins, Advanced Materials 36 (2024). https://doi.org/10.1002/adma.202407046
  34. D.A. Hickman, C.L. Pawlowski, U.D.S. Sekhon, J. Marks, A. Sen Gupta, Biomaterials and Advanced Technologies for Hemostatic Management of Bleeding, Advanced Materials 30 (2018). https://doi.org/10.1002/adma.201804635
  35. D.S. Kauvar, R. Lefering, C.E. Wade, Impact of Hemorrhage on Trauma Outcome: An Overview of Epidemiology, Clinical Presentations, and Therapeutic Considerations, Journal of Trauma: Injury, Infection & Critical Care 60 (2006) S3-S11. https://doi.org/10.1097/01.ta.0000199961.02677.19
  36. A. Malik, F.U. Rehman, K.U. Shah, S.S. Naz, S. Qaisar, Hemostatic strategies for uncontrolled bleeding: A comprehensive update, J Biomed Mater Res B Appl Biomater 109 (2021) 1465-1477. https://doi.org/10.1002/jbm.b.34806
  37. P. Yu, W. Zhong, Hemostatic materials in wound care, Burns Trauma 9 (2021). https://doi.org/10.1093/burnst/tkab019
  38. H.H. Rashidi, K.A. Bowers, M. Reyes Gil, Machine learning in the coagulation and hemostasis arena: an overview and evaluation of methods, review of literature, and future directions, Journal of Thrombosis and Haemostasis 21 (2023) 728-743. https://doi.org/10.1016/j.jtha.2022.12.019
  39. T. Feng, Y. Wang, W. Zhang, T. Cai, X. Tian, J. Su, Z. Zhang, S. Zheng, S. Ye, B. Dai, Z. Wang, Y. Zhu, H. Zhang, K. Chang, D. Ye, Machine Learning-based Framework Develops a Tumor Thrombus Coagulation Signature in Multicenter Cohorts for Renal Cancer, Int J Biol Sci 20 (2024) 3590-3620. https://doi.org/10.7150/ijbs.94555
  40. A. Rawal, C. Kidchob, J. Ou, Z.E. Sauna, Application of machine learning approaches for predicting hemophilia A severity, Journal of Thrombosis and Haemostasis 22 (2024) 1909-1918. https://doi.org/10.1016/j.jtha.2024.04.019
  41. C.-H. Yeh, Y.-J. Chou, T.-H. Tsai, P.W.-C. Hsu, C.-H. Li, Y.-H. Chan, S.-F. Tsai, S.-C. Ng, K.-M. Chou, Y.-C. Lin, Y.-H. Juan, T.-C. Fu, C.-C. Lai, H.-K. Sytwu, T.-F. Tsai, Artificial-Intelligence-Assisted Discovery of Genetic Factors for Precision Medicine of Antiplatelet Therapy in Diabetic Peripheral Artery Disease, Biomedicines 10 (2022) 116. https://doi.org/10.3390/biomedicines10010116
  42. T.J.S. Lopes, T. Nogueira, R. Rios, A Machine Learning Framework Predicts the Clinical Severity of Hemophilia B Caused by Point-Mutations, Frontiers in Bioinformatics 2 (2022). https://doi.org/10.3389/fbinf.2022.912112
  43. A. Bouchnita, P. Nony, J.-P. Llored, V. Volpert, Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow, Math Biosci 349 (2022) 108830. https://doi.org/10.1016/j.mbs.2022.108830
  44. J. Xiao, R.L. Melvin, F.R. Salsbury, Probing light chain mutation effects on thrombin via molecular dynamics simulations and machine learning, J Biomol Struct Dyn 37 (2019) 982-999. https://doi.org/10.1080/07391102.2018.1445032
  45. S.L.N. Brouns, J.P. van Geffen, E. Campello, F. Swieringa, L. Spiezia, R. van Oerle, I. Provenzale, R. Verdoold, R.W. Farndale, K.J. Clemetson, H.M.H. Spronk, P.E.J. van der Meijden, R. Cavill, M.J.E. Kuijpers, E. Castoldi, P. Simioni, J.W.M. Heemskerk, Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation, Sci Rep 10 (2020) 11910. https://doi.org/10.1038/s41598-020-68438-9
  46. I. Yoon, J.H. Han, H.-J. Jeon, Advances in Platelet-Dysfunction Diagnostic Technologies, Biomolecules 14 (2024) 714. https://doi.org/10.3390/biom14060714
  47. X. Wang, S. Luo, X. Cui, H. Qu, Y. Zhao, Q. Liao, Machine learning-based predictive model for the development of thrombolysis resistance in patients with acute ischemic stroke, BMC Neurol 24 (2024) 296. https://doi.org/10.1186/s12883-024-03781-2
  48. T. Yu, R. Shen, G. You, L. Lv, S. Kang, X. Wang, J. Xu, D. Zhu, Z. Xia, J. Zheng, K. Huang, Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study, Front Cardiovasc Med 9 (2022). https://doi.org/10.3389/fcvm.2022.990788
  49. D. Hasegawa, K. Yamakawa, K. Nishida, N. Okada, S. Murao, O. Nishida, Comparative Analysis of Three Machine-Learning Techniques and Conventional Techniques for Predicting Sepsis-Induced Coagulopathy Progression, J Clin Med 9 (2020) 2113. https://doi.org/10.3390/jcm9072113
  50. Y. Miyagi, K. Tada, I. Yasuhi, K. Tsumura, Y. Maegawa, N. Tanaka, T. Mizunoe, I. Emoto, K. Maeda, K. Kawakami, A Novel Method for Determining Fibrin/Fibrinogen Degradation Products and Fibrinogen Threshold Criteria via Artificial Intelligence in Massive Hemorrhage during Delivery with Hematuria, J Clin Med 13 (2024) 1826. https://doi.org/10.3390/jcm13061826
  51. P. Gresele, Artificial intelligence and machine learning in hemostasis and thrombosis, Bleeding, Thrombosis and Vascular Biology 2 (2024). https://doi.org/10.4081/btvb.2023.105
  52. A.D. Meid, L. Wirbka, A. Groll, W.E. Haefeli, Can Machine Learning from Real-World Data Support Drug Treatment Decisions? A Prediction Modeling Case for Direct Oral Anticoagulants, Medical Decision Making 42 (2022) 587-598. https://doi.org/10.1177/0272989X211064604
  53. D.L. Labovitz, L. Shafner, M. Reyes Gil, D. Virmani, A. Hanina, Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy, Stroke 48 (2017) 1416-1419. https://doi.org/10.1161/STROKEAHA.116.016281
  54. M.C. Vedovati, A. Mancuso, L. Pierpaoli, U. Paliani, S. Conti, A. Ascani, G. Galeotti, F. Di Filippo, C. Caponi, G. Agnelli, C. Becattini, Prediction of major bleeding in patients receiving DOACs for venous thromboembolism: A prospective cohort study, Int J Cardiol 301 (2020) 167-172. https://doi.org/10.1016/j.ijcard.2019.11.105
  55. D.A. Mei, J.F. Imberti, N. Bonini, G.F. Romiti, B. Corica, M. Proietti, M. Vitolo, G.Y.H. Lip, G. Boriani, Performance of HAS-BLED and DOAC scores to predict major bleeding events in atrial fibrillation patients treated with direct oral anticoagulants: A report from a prospective European observational registry, Eur J Intern Med 128 (2024) 63-70. https://doi.org/10.1016/j.ejim.2024.06.022
  56. S. Zeng, W. Zhu, S. Guo, H. Hong, Predictive performance of HAS-BLED, ORBIT, ABC, and DOAC scores for major bleeding in atrial fibrillation patients on DOACs, Eur J Intern Med 128 (2024) 131-133. https://doi.org/10.1016/j.ejim.2024.06.027