Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 11 (2024)

Organic and Inorganic Modified Montmorillonite as a Scavenger of Formaldehyde in Modified Urea-Formaldehyde Composites

DOI
https://doi.org/10.31875/2410-4701.2024.11.06
Published
2024-09-24

Abstract

This research used montmorillonite (K10) modified with Hexadecyltrimethylammonium bromide (HDTMABr), and sulfuric acid (H2SO4). The samples are marked with MMT, OMMT for organic-modified montmorillonite, and AMMT for inorganic-modified montmorillonite. UF resin with a molar ratio FA/U = 0.8 was synthesized in situ with modified and unmodified MMT. X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), non-isothermal thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to characterize the MMT samples. The degree of activation was determined based on the measurement of specific surface area, which was determined by the Sears method. The sulfite method was used to determine free and released formaldehyde from synthesized urea-formaldehyde/montmorillonite (UF/MMT) composites. SEM analysis showed changes in the OMMT morphology and the formation of a hollow network, affecting the clay's absorption capacity. Measurement of the specific surface area shows that higher values were obtained for AMMT (183 m2/g) compared to OMMT (13.5 m2/g). Despite that, the free and released formaldehyde amount was 0.06% and 4.6% for UF/AMMT and 0.1% and 1.0% for UF/OMMT. The larger interlayer spacing and hydrophobic nature of OMMT make it an effective barrier within the UF resin matrix.

References

  1. Park BD, Causin V. Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Eur Polym J. 2013; 49: 532-7. https://doi.org/10.1016/j.eurpolymj.2012.10.029
  2. Park BD, Jeong HW. Hydrolytic stability and crystallinity of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. Int. J. Adhes Adhes 2011; 31(6): 524-9. https://doi.org/10.1016/j.ijadhadh.2011.05.001
  3. Valyova M, Ivanova Y, Koynov D. Investigation of free formaldehyde quantity in the production of plywood with modified urea-formaldehyde resin. Wood, Design & Technology 2017; 6(1): 72-77, ISSN: 1857 - 8381
  4. Nuryawan A, Risnasari I, Sucipto T, Heri Iswanto A, Rosmala Dewi R. Urea-formaldehyde resins: Production, application, and testing. IOP Conf. Ser.: Mater Sci Eng 2017; 223:012053. https://doi.org/10.1088/1757-899X/223/1/012053
  5. IARC: Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 2004; 88: 1-478
  6. Commission Regulation (EU) 2023/1464 of 14 July 2023 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council as regards formaldehyde and formaldehyde releasers
  7. Lubis MAR, Park BD, Lee SM, Modification of urea-formaldehyde resin adhesives with blocked isocyanates using sodium bisulfate. Int J Adhes Adhes 2017; 73: 118-124. https://doi.org/10.1016/j.ijadhadh.2016.12.001
  8. Conner AH. Urea-Formaldehyde Adhesive Resins. In: Salamone JC. editor. Polymeric Materials Encyclopedia. New York, USA: 1996.
  9. Park BD, Kang EC, Park YJ. Effects of formaldehyde to urea mole ratio on thermal curing behavior of urea-formaldehyde resin and properties of particle board. J Appl Polym Sci 2006; 101:1787-92. https://doi.org/10.1002/app.23538
  10. Costa N, Pereira J, Martins D, Martins J, Ferra J, Cruz P, Magalhães F, Mendes A, Carvalho L. Innovative catalysts for urea-formaldehyde resins. In Minimizing the environmental impact of the forest products industries. Caldeira F., Ed.; University Fernando Pessoa, Porto. 2011.
  11. Lei H, Du G, Pizzi A, Celzard A. Influence of nanoclay on urea-formaldehyde resins for wood adhesives and its model. J Appl Polym Sci 2008; 109:2442-51. https://doi.org/10.1002/app.28359
  12. Park HS, Lee H. A novel manufacturing method of urea-formaldehyde resin with the titanium dioxide for reducing formaldehyde emission. Korean Journal of Agricultural Science 2009; 36.1: 11-18.
  13. Kostić M, Samaržija-Jovanović S, Ristić M, Jovanović T, Jovanović V, Marković G, Marinović Cincović M. Effect of montmorillonite activation method on formaldehyde content in urea-formaldehyde composites. Int J Adhes Adhes 2023; 103390. https://doi.org/10.1016/j.ijadhadh.2023.103390
  14. Jovanović V, Samaržija-Jovanović S, Petković B, Milićević Z, Marković G, Marinović-Cincović M. Biocomposites based on cellulose and starch modified urea-formaldehyde resin: Hydrolytic, thermal, and radiation stability. Polym Compos 2019; 40:1287-94. https://doi.org/10.1002/pc.24849
  15. Ristić M, Samaržija-Jovanović S, Jovanović V, Kostić M, Erceg T, Jovanović T, Marković M, Marinović-Cincović M. Hydrolytic and thermal stability of urea-formaldehyde resins based on tannin and betaine bio-fillers, J Vinyl Addit Techn 2023; 29(6): 1082-92. https://doi.org/10.1002/vnl.22024
  16. El Achaby M, Ennajih H, Arrakhiz FZ, El Kadib A, Bouhfid R, Essassi E, Qaiss A. Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of polymer organoclay nanocomposites. Compos Part B Eng 2013; 51:310-17. https://doi.org/10.1016/j.compositesb.2013.03.009
  17. Zuoa Q, Gaoa X, Yanga J, Zhanga P, Chena G, Li Y, Shi K, Wua W. Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution. J TAIWAN Inst Chem E 2017; 80: 754-776. https://doi.org/10.1016/j.jtice.2017.09.016
  18. Amari A, Gannouni H, Khan MI, Almesfer MK, Elkhaleefa AM, Gannouni A, Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Appl Sci 2018; 8: 2302-32. https://doi.org/10.3390/app8112302
  19. Stoiljković S, Todorović B. Adsorption-desorption and usable properties of bentonite-based materials. Monografy (in serbian lanque), Leskovac, 2018
  20. Jankovič L`, Madejová J, Komadel P, Jochec-Mošková D, Chodák I, Characterization of systematically selected organo-montmorillonites for polymer nanocomposites, Appl. Clay Sci 2011; 51: 438-444. https://doi.org/10.1016/j.clay.2011.01.006
  21. He H, Zhou Q, Martens WN, Kloprogge TJ, Yuan P, Xi Y, Zhu JI, Frost RL. Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics. Clays Clay Miner 2006; 54(6): 689-696. https://doi.org/10.1346/CCMN.2006.0540604
  22. Ristić M, Samaržija-Jovanović S, Jovanović T, Jovanović V, Kostić M, Marković G, Marinović-Cincović M. Organically modified montmorillonite as an environmental adsorbent of pollutants: Formaldehyde from urea-formaldehyde resin and acid red 183 dye from the aqueous solution. J Environ Chem Eng 2024; 12(1): 111828. https://doi.org/10.1016/j.jece.2023.111828
  23. Ajemba RO. Kinetics and equilibrium modeling of lead(II) and chromium(III) ions’ adsorption onto clay from Kono-bowe, Nigeria. Turkish J Eng Environ Sci 2014; 38: 455-79. https://doi.org/10.3906/muh-1402-3
  24. Jovanović V, Samaržija-Jovanović S, Petković B, Dekić V, Marković G, Marinović-Cincović M. Effect of γ-irradiation on the hydrolytic and thermal stability of micro- and nano-TiO2 based urea-formaldehyde composites. RSC Adv 2015; 5: 59715-22. https://doi.org/10.1039/C5RA10627C
  25. Walker JF. Formaldehyde. American Chemical Society Monograph Series, 3rd edn. No. 159, New York: Reinhold Publ. Corp. 1969.
  26. Sears GW. Determination of specific surface area of colloidal silica by titration with sodium hydroxide. Anal Chem 1956; 28(12): 1981-83. https://doi.org/10.1021/ac60120a048
  27. Topal T. The use of methylene blue adsorption test to assess the clay content of the Cappadocian tuff. In: Proceedings of the 8th international congress on the deterioration and conservation of Stone, Berlin, 1996: 791-99
  28. Wibowo E, Park BD. Determination of crystallinity of thermosetting urea-formaldehyde resins using deconvolution method. Macromol Res 2020; 28: 615-24. https://doi.org/10.1007/s13233-020-8076-2
  29. Yuan L, Chen L, Chen X, Liu R, Ge G. In situ measurement of surface functional groups on silica nanoparticles using solvent relaxation nuclear magnetic resonance. Langmuir 2017; 33(35): 8724-29. https://doi.org/10.1021/acs.langmuir.7b00923
  30. Parker SF, Klehm U, Albers PV. Differences in morphology and vibrational dynamics of crystalline, vitreous and amorphous silica - commercial implications. Mater Adv 2020; 1: 749-59. https://doi.org/10.1039/D0MA00158A
  31. Klapyta Z, Fujita T, Iyi N. Adsorption of dodecyl- and octadecyltrimethylammonium ions on a smectite and synthetic micas. Appl Clay Sci 2001; 19: 5-10. https://doi.org/10.1016/S0169-1317(01)00059-X
  32. Kakasaheb YN, Prashant SN, Vijay VB. Synthesis of oxygenated fuel additives via acetylation of bio-glycerol over H2SO4 modified montmorillonite K10 catalyst. Progress Petrochem Sci 2018; 1(1): PPS.000501. https://doi.org/10.31031/PPS.2018.01.000501
  33. Jiang JQ, Zeng Z. Comparison of modified montmorillonite adsorbents Part II: The effects of the type of raw clays and modification conditions on the adsorption performance. Chemosphere 2003; 53: 53-62. https://doi.org/10.1016/S0045-6535(03)00449-1
  34. Marsh A, Heath A, Patureau P, Evernden M, Walker P, Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl Clay Sci 2018; 166: 250-261. https://doi.org/10.1016/j.clay.2018.09.011
  35. Krupskaya VV, Zakusin SV, Tyupina EA, Dorzhieva OV, Zhukhlistov AP, Belousov PE, Timofeeva MN. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals 2017; 7: 49-64. https://doi.org/10.3390/min7040049
  36. Xu SH, Sheng GY, Boyd SA. Use of organoclays in pollution abatement, Adv Agron 1997; 59: 25-62
  37. Marras SI, Tsimpliaraki A, Zuburtikudis I, Panayiotou C. Thermal and colloidal behavior of amine-treated clays: The role of amphiphilic organic cation concentration. J Colloid Interf Sci 2007; 315: 520-527. https://doi.org/10.1016/j.jcis.2007.06.023
  38. Ahmed A, Chaker Y, Belarbi EH, Abbas O, Chotard JN, Abassi HB, Nguyen Van Nhien A, El Hadri M, Bresson S. XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. J Mol Struct 2018; 1173: 653-64. https://doi.org/10.1016/j.molstruc.2018.07.039
  39. Samaržija-Jovanović S, Jovanović V, Jovanović T, Petković B, Marković G, Porobić S, Marinović-Cincović M. Synthesis, characterization, hydrolytic, and thermal stability of urea–formaldehyde composites based on modified montmorillonite K10. Journal of Thermal Analysis and Calorimetry 2022; 147(9). https://doi.org/10.1007/s10973-022-11238-2
  40. Madejova J, Palkova H, Pentrak M, Komadel P Near-infrared spectroscopic analysis of acid-treated organo-clays. Clay Clay Miner 2009; 57: 392-403. https://doi.org/10.1346/CCMN.2009.0570311
  41. Živica V, Palou MT. Physico-chemical characterization of thermally treated bentonite. Compos Part B Eng 2015; 68: 436-45. https://doi.org/10.1016/j.compositesb.2014.07.019
  42. He H, Ding Z, Zhu J, Yuan P, Xi Y, Yang D, Frost RL. Thermal Characterization of Surfactant-Modified Montmorillonites, Clay Clay Miner 2005; 53: 287-293. https://doi.org/10.1346/CCMN.2005.0530308
  43. Naranjo PM, Sham EL, Castellon ER, Torres Sanchez RM, Farfan Torres EM. Identification and quantification of the interaction mechanisms between the cationic surfactant HDTMA-BR and montmorillonite. Clay Clay Miner 2013; 61(2): 98-106. https://doi.org/10.1346/CCMN.2013.0610208
  44. Samaržija-Jovanović S, Jovanović V, Konstantinović S, Marković G, Marinović-Cincović M. Thermal behavior of modified urea-formaldehyde resins. J Therm Anal Calorim. 2011; 104: 1159-66. https://doi.org/10.1007/s10973-010-1143-8
  45. Tiwari RR, Khilar KC, Natarajan U. Synthesis and characterization of novel organo-montmorillonites. Appl Clay Sci 2008; 38: 203-8. https://doi.org/10.1016/j.clay.2007.05.008
  46. Ainurofiq A, Nurcahyo I, Yulianto R. Preparation, characterization and formulation of nanocomposite matrix Na-montmorillonite intercalated medium molecular weight chitosan for theophylline sustained release tablet, Int J Pharm Pharm Sci 2014; 6(1): 131-37
  47. Dazmiri MK, Kiamahalleh MV, Dorieh A, Pizzi A. Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its influence on the performance of medium density fiberboard bonded with them. Int J Adhesion Adhes 2019; 95: 102440. https://doi.org/10.1016/j.ijadhadh.2019.102440