Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Fine Precipitates in Nickel Base Superalloys

DOI
https://doi.org/10.31875/2410-4701.2019.06.1
Submitted
October 31, 2019
Published
2019-10-31

Abstract

Presence of fine, secondary/tertiary precipitates in superalloys improves especially the creep-fatigue properties of these alloys. It is conveniently accepted that the fine precipitates form non-isothermally, for example, during cooling from an aging temperature or isothermally during a secondary, lower temperature aging. In the current study, several single-aging treatments were conducted to assess the formation of the fine precipitates in the polycrystalline, nickel-base superalloy IN738LC. The agings were carried out stress-free at 950oC, 1050oC, 1120oC, and 1140oC for various times. Stressed agings at 950oC and 1050oC were also conducted. A time-dependent isothermal formation of the fine precipitates was observed. The formation time decreased as the aging temperature increased. It is suggested that dissolution of some coarse precipitates, evolution of the precipitate-matrix interface toward a fully faceted one, and increased matrix channel width saturate the channels and control the formation of the fine precipitates.

References

  1. RC. Reed: The Superalloys-Fundamentals and Applications, 1st ed., Cambridge University Press, New York, NY, 2006; pp. 40-49.
  2. G. Boussinot, A. Finel, and Y. Le Bouar: Acta Mater 2009; 57; 921-931. https://doi.org/10.1016/j.actamat.2008.10.039
  3. S. Behrouzghaemi and RJ. Mitchell: Mater Sci Eng A 2008; 498: 266-271. https://doi.org/10.1016/j.msea.2008.07.069
  4. RJ. Mitchell, M. Preuss, MC. Hardy, and S. Tin: Mater Sci Eng A 2006; 423: 282-291. https://doi.org/10.1016/j.msea.2006.02.039
  5. RJ. Mitchell and M. Preuss: Metall Mater Trans A 2007; 38A: 615-627. https://doi.org/10.1007/s11661-007-9089-6
  6. J. Mao, K. Chang, W. Yang, K. Ray, SP. Vaze, and DU. Furrer: Metall Mater Trans A 2001; 32A: 2441-2452. https://doi.org/10.1007/s11661-001-0034-9
  7. PM. Sarosi, B. Wang, JP. Simmons, Y. Wang, and MJ. Mills: Scripta Mater 2007; 57: 767-770. https://doi.org/10.1016/j.scriptamat.2007.06.014
  8. YH. Wen, JP. Simmons, C. Shen, C. Woodward, and Y. Wang: Acta Mater 2003; 51: 1123-1132. https://doi.org/10.1016/S1359-6454(02)00516-5
  9. E. Balikci and D. Erdeniz: Metall Mater Trans A 2010; 41A: pp. 1391-1198. https://doi.org/10.1007/s11661-010-0241-3
  10. E. Balikci, A. Raman, and RA. Mirshams: Metall Mater Trans A 1997; 28A: 1993-2003. https://doi.org/10.1007/s11661-997-0156-9
  11. E. Balikci, RA. Mirshams, and A. Raman: Z Metallkd 1999; 90(2): 132-140.
  12. A. Altincekic and E. Balikci: Metall Mater Trans A 2013; 44A: 2487-2498. https://doi.org/10.1007/s11661-013-1618-x
  13. Q. Chen, K. Wu, G.Sterner, and P.Mason: J Mater Eng Perform 2014; 23: 4193-4196. https://doi.org/10.1007/s11665-014-1255-6
  14. S. Xiang, S. Mao, H. Wei, Y. Liu, J. Zhang, Z. Shen, H. Long, H. Zhang, X. Wang, Z. Zhang, and X. Han: Acta Mater 2016; 116: 343-353. https://doi.org/10.1016/j.actamat.2016.06.055
  15. J. Cormier, V. Caccuri, JB. Graverend, P. Villechaise: Scripta Mater 2017; 129: 100-103. https://doi.org/10.1016/j.scriptamat.2016.10.012
  16. HI. Aaranson: J. Microsc 1974; 102: 275-300. https://doi.org/10.1111/j.1365-2818.1974.tb04640.x
  17. WS. Rasband: Image J, US. National Institutes of Health, Bethesda, MD, 1997-2007. http://rsb.info.nih.gov/ij/.
  18. RD. Doherty: Met Sci 1982; 16: 1-13. https://doi.org/10.1080/0031322X.1982.9969649
  19. IM. Lifshitz and VV. Sloyozov: J Phys Chem Solids 1961; 19(1-2): 35-50. https://doi.org/10.1016/0022-3697(61)90054-3
  20. C. Wagner: Z. Elektrochemie 1961; 65(7-8): 581-591. https://doi.org/10.1001/archopht.1961.01840020583023
  21. AJ. Ardell: Acta Metall 1972; 20(1): 61-71. https://doi.org/10.1016/0001-6160(72)90114-9
  22. AD. Brailsford and P. Wynblatt: Acta Metall 1979; 27(3): 489- 497. https://doi.org/10.1016/0001-6160(79)90041-5
  23. C. Ahn, N. Bennett, ST. Dunham, and NEB. Cowern: Phys Rev B 2009; 79(7): 073201-1-073201-4. https://doi.org/10.1103/PhysRevB.79.073201
  24. RS. Moshtaghin and S. Asgari: Mater. Des 2003; 24: 325- 330. https://doi.org/10.1016/S0261-3069(03)00061-X
  25. E. Balikci, R.E. Ferrell, Jr., and A. Raman: Z. Metallkd 1999; 90: 141-146.
  26. G. Wang, DS. Xu, N. Ma, N. Zhou, EJ. Payton, R. Yang, MJ. Mills, and Y. Wang: Acta Mater 2009; 57: 316-325. https://doi.org/10.1016/j.actamat.2008.09.010
  27. AB. Parsa, P. Wollgramm, H. Buck, A. Kostka, C. Somsen, A. Dlouhy, and G. Eggeler: Acta Mater 2015; 90: 105-117. https://doi.org/10.1016/j.actamat.2015.02.005
  28. A.K. Dwarapureddy, E. Balikci, S. Ibekwe, and A. Raman: J Mater Sci 2008; 43: 1802-1810 https://doi.org/10.1007/s10853-007-2342-y
  29. I. Roy, E. Balikci, S. Ibekwe, and A. Raman: J Mater Sci 2005; 40: 6207-6215. https://doi.org/10.1007/s10853-005-3154-6
  30. R. Schmidt and M. Feller-Kniepmeier: Metall Trans A 1992; 23A: 745-757. https://doi.org/10.1007/BF02675552
  31. AJ. Ardell and V. Ozolins: Nat. Mater 2005; 4: 309-316. https://doi.org/10.1038/nmat1340
  32. S. Meher, T. Rojhirunsakool, P. Nandwana, J. Tiley, and R. Banerjee: Ultramicroscopy 2015; 159: 272-277. https://doi.org/10.1016/j.ultramic.2015.04.015
  33. XP. Tan, D. Mangelinck, C. Perrin-Pellegrino, L. Rougier, Ch.-A. Gandin, A. Jacot, D. Ponsen, and V. Jaquet: Metall. Mater. Trans. A, 2014; 45A: 4725-4730. https://doi.org/10.1007/s11661-014-2506-8
  34. XP. Tan, D. Mangelinck, C. Perrin-Pellegrino, L. Rougier, Ch.-A. Gandin, A. Jacot, D. Ponsen, and V. Jaquet: J. Alloy Compd 2014; 611: 389-394. https://doi.org/10.1016/j.jallcom.2014.05.132
  35. JY. Hwang, S. Nag, ARP. Singh, R. Srinivasan, J. Tiley, HL. Fraser, and R. Banerjee: Scripta Mater 2009; 61: 92-95. https://doi.org/10.1016/j.scriptamat.2009.03.011
  36. F. Forghani, JC. Han, J. Moon, R. Abbaschian, CG. Park, HS. Kim, and M. Nili-Ahmadabadi: J. Alloy Compd 2019; 777: 1222-1233. https://doi.org/10.1016/j.jallcom.2018.10.128
  37. LT. Mushongera, M. Fleck, J. Kundin, Y. Wang, and H. Emmerich: Acta Mater 2015; 93: 60-72. https://doi.org/10.1016/j.actamat.2015.03.048
  38. GC. Weatherly: Acta Metall 1971; 19: 181-192. https://doi.org/10.1016/0001-6160(71)90145-3
  39. PK. Footner and B.P. Richards: J Mater Sci 1982; 17: 2141- 2153. https://doi.org/10.1007/BF00540433
  40. A. Altincekic and E. Balikci: Metall. Mater Trans A 2014; 45A: 5923-5936. https://doi.org/10.1007/s11661-014-2558-9
  41. R. Schmidt and M. Feller-Kniepmeier: Scripta Metall. Mater 1993; 29: 1079-1084. https://doi.org/10.1016/0956-716X(93)90181-Q
  42. A. Epishin, T. Link, and G. Nolze: J Microsc 2007; 228: 110- 117. https://doi.org/10.1111/j.1365-2818.2007.01831.x
  43. RD. Vengrenovich, YV. Gudyma, and S.V. Yarema: Phys Met Metallogr 2001; 91(3): 228-232. YM. Ustyugov: Phys Met Metallogr 2007; 104: 453-460. https://doi.org/10.1134/S0031918X07110038
  44. JB. Le Graverend, J. Cormier, F. Gallerneau, and P. Paulmier: Adv Mat Res 2011; 278: 31-36. https://doi.org/10.4028/www.scientific.net/AMR.278.31
  45. RA. Ricks, AJ. Porter, and RC. Ecob: Acta Metall 1983; 31(1): 43-53. https://doi.org/10.1016/0001-6160(83)90062-7
  46. M. Doi, T. Miyazaki, and T. Wakatsuki: Mater Sci Eng 1984; 67(2): 247-253. https://doi.org/10.1016/0025-5416(84)90056-9
  47. PW. Voorhees and WC. Johnson: J Chem Phys 1986; 84(9): 5108-5121. https://doi.org/10.1063/1.450664
  48. WC. Johnson and PW. Voorhees: J Appl Phys 1987; 61: 1610-1619. https://doi.org/10.1063/1.338099
  49. RG. Richards, G.Rh. Owen, and I. ap Gwynn: Scanning Microscopy 1999; 13(1): 55-60.
  50. KL. Lee, M. Ward: J Vac Sci Technol B 1991; 9(6): 3590- 3596. https://doi.org/10.1116/1.585851
  51. Radis R. Radis, M. Schaffer, M. Albu, G. Kothleitner, P. Pölt, and E. Kozeschnik: Acta Metall Mater 2009; 57(19): 5739- 5747. https://doi.org/10.1016/j.actamat.2009.08.002
  52. J. Li and RP. Wahi: Acta Metall Mater 1995; 43(2): 507-517. https://doi.org/10.1016/0956-7151(94)00252-D