Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Recent Advances in Nanomaterial-Based Flexible Piezoresistive Sensors for Robotic Tactile Sensing

DOI:
https://doi.org/10.31875/
Submitted
October 3, 2025
Published
08.11.2025

Abstract

The expansion of industrial automation has underscored the critical role of robotic systems, where pressure sensors serve as essential interfaces for tactile feedback and precise manipulation. Flexible piezoresistive pressure sensors have become especially attractive because of their simple design, straightforward operation, and scalable fabrication. Recent progress in conductive nanomaterials such as carbon- and metal-based fillers, and engineered microstructures, including surface and porous designs in both single and hierarchical configurations, has significantly improved sensor sensitivity and broadened their operational range, demonstrating how material choice and structural engineering directly shape device performance. This review introduces the underlying physics of piezoresistivity and discusses the metrics commonly used to characterize sensor behavior, including sensitivity, gauge factor, and response time, before examining advances in nanomaterial integration and structural strategies that enable enhanced functionality. Applications highlight their integration into robotic fingertips and joints, where they provide force regulation, object recognition, and motion tracking, underscoring their importance in robotic control. Remaining challenges such as uniformity, reproducibility, and large-scale manufacturability continue to hinder widespread adoption, yet ongoing improvements in material systems and fabrication methods promise to address these limitations. Through the integration of material design, structural engineering, and performance evaluation, this work establishes a comprehensive link between fundamental principles and robotic applications, offering insights that can guide the development of next-generation tactile sensing technologies and opening pathways toward next-generation robotic systems empowered by highly sensitive and reliable pressure sensors.

References

  1. Acemoglu, D., & Restrepo, P. (2022). Demographics and Automation. The Review of Economic Studies, 89(1), 1-44. https://doi.org/10.1093/restud/rdab031
  2. Ivanov, V., Andrusyshyn, V., Pavlenko, I., Pitel, Jan., & Bulej, V. (2024). New classification of industrial robotic gripping systems for sustainable production. Scientific Reports, 14(1), 295. https://doi.org/10.1038/s41598-023-50673-5
  3. Chi, C., Sun, X., Xue, N., Li, T., & Liu, C. (2018). Recent progress in technologies for tactile sensors. Sensors, 18(4), 948. https://doi.org/10.3390/s18040948
  4. Piazza, C., Grioli, G., Catalano, M. G., & Bicchi, A. (2019). A Century of Robotic Hands. Annual Review of Control, Robotics, and Autonomous Systems, 2, 1-32. https://doi.org/10.1146/annurev-control-060117-105003
  5. Diana, M., Marescaux, J., (2015). Robotic surgery. British Journal of Surgery, 102(2), e15-e28. https://doi.org/10.1002/bjs.9711
  6. Jiang, X., Koo, K. M., Kikuchi, K., Konno, A., & Uchiyama, M. (2011). Robotized Assembly of a Wire Harness in a Car Production Line. Advanced Robotics, 25(3-4), 473-489. https://doi.org/10.1163/016918610X551782
  7. Bogue, R. (2011). Robots in the nuclear industry: a review of technologies and applications. Industrial Robot, 38(2), 113-118. https://doi.org/10.1108/01439911111106327
  8. Weiss, A., Buchner, R., Tscheligi, M., & Fischer, H. (2011, May). Exploring human-robot cooperation possibilities for semiconductor manufacturing. In 2011 international conference on collaboration technologies and systems (CTS) (pp. 173-177). IEEE. https://doi.org/10.1109/CTS.2011.5928683
  9. Almurib, H. A., Al-Qrimli, H. F., & Kumar, N. (2012, January). A review of application industrial robotic design. In 2011 Ninth International Conference on ICT and Knowledge Engineering (pp. 105-112). IEEE. https://doi.org/10.1109/ICTKE.2012.6152387
  10. Kappassov, Z., Corrales, J. A., & Perdereau, V. (2015). Tactile sensing in dexterous robot hands. Robotics and Autonomous Systems, 74, 195-220. https://doi.org/10.1016/j.robot.2015.07.015
  11. Lee, M. H., & Nicholls, H. R. (1999). Review Article Tactile sensing for mechatronics—a state of the art survey. Mechatronics, 9(1), 1-31. https://doi.org/10.1016/S0957-4158(98)00045-2
  12. Mao, C., Jin, J., Mei, D., & Wang, Y. (2024). Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection. Advanced Sensor Research, 3(8), 2400012. https://doi.org/10.1002/adsr.202400012
  13. Georgopoulou, A., Michel, S., & Clemens, F. (2021). Sensorized Robotic Skin Based on Piezoresistive Sensor Fiber Composites Produced with Injection Molding of Liquid Silicone. Polymers, 13(8), 1226. https://doi.org/10.3390/polym13081226
  14. Fonseca, G., Nunes-Pereira, J., & Silva, A. P. (2023). 3D Printed Robotic Hand with Piezoresistive Touch Capability. Applied Sciences, 13(14), 8002. https://doi.org/10.3390/app13148002
  15. Wang, S., Wang, X., Gao, Z., Zhang, Y., Wang, L., Liu, Y., Liu, J., Rong, L., Peng, Z., & Ouyang, Q. (2025). A smart finger for robotic tactile sensing of surface/subsurface patterns based on a high-density piezoresistive sensor array. Biosensors and Bioelectronics, 289, 117858. https://doi.org/10.1016/j.bios.2025.117858
  16. Chen, Y., Yan, X., Zhu, Y., Cui, M., Kong, L., Kuang, M., Zhang, X., & Wang, R. (2022). A carbon nanotube-based textile pressure sensor with high-temperature resistance. RSC Advances, 12(36), 23091-23098. http://doi.org/10.1039/D2RA04036K
  17. Gao, L., Zhu, C., Li, L., Zhang, C., Liu, J., Yu, H.-D., & Huang, W. (2019). All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & Interfaces, 11(28), 25034-25042. https://doi.org/10.1021/acsami.9b07465
  18. Yao, J. L., Yang, X., Shao, N., Luo, H., Zhang, T., & Jiang, W. G. (2016). A flexible and highly sensitive piezoresistive pressure sensor based on micropatterned films coated with carbon nanotubes. Journal of Nanomaterials, 2016(1), 3024815. https://doi.org/10.1155/2016/3024815
  19. Mishra, R. B., El-Atab, N., Hussain, A. M., & Hussain, M. M. (2021). Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Advanced Materials Technologies, 6(4), 2001023. https://doi.org/10.1002/admt.202001023
  20. Ha, K.-H., Huh, H., Li, Z., & Lu, N. (2022). Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano, 16(3), 3442-3448. https://doi.org/10.1021/acsnano.2c00308
  21. Yang, Y., Pan, H., Xie, G., Jiang, Y., Chen, C., Su, Y., Wang, Y., & Tai, H. (2020). Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical, 301, 111789. https://doi.org/10.1016/j.sna.2019.111789
  22. Zhi, C., Shi, S., Si, Y., Fei, B., Huang, H., & Hu, J. (2023). Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning. Advanced Materials Technologies, 8(5), 2201161. https://doi.org/10.1002/admt.202201161
  23. Zhao, Y., Miao, L., Xiao, Y., & Sun, P. (2024). Research progress of flexible piezoresistive pressure sensor: A review. IEEE Sensors Journal. (pp. 31624-31644). IEEE. https://doi.org/10.1109/JSEN.2024.3443423
  24. Qiao, Z., Wei, A., Wang, K., Liu, Z., & Luo, N. (2022). Study of flexible piezoresistive sensors based on the hierarchical porous structure CNT /PDMS composite materials. Journal of Alloys and Compounds, 917, 165503. https://doi.org/10.1016/j.jallcom.2022.165503
  25. Yong, S., Chapman, J., & Aw, K. (2022). Soft and flexible large-strain piezoresistive sensors: On implementing proprioception, object classification and curvature estimation systems in adaptive, human-like robot hands. Sensors and Actuators A: Physical, 341, 113609. https://doi.org/10.1016/j.sna.2022.113609
  26. Chen, W., & Yan, X. (2020). Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science & Technology, 43, 175-188. https://doi.org/10.1016/j.jmst.2019.11.010
  27. Seesaard, T., & Wongchoosuk, C. (2023). Flexible and Stretchable Pressure Sensors: From Basic Principles to State-of-the-Art Applications. Micromachines, 14(8), 1638. https://doi.org/10.3390/mi14081638
  28. Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors, 21(2), 341. https://doi.org/10.3390/s21020341
  29. Ruth, S. R. A., Feig, V. R., Tran, H., & Bao, Z. (2020). Microengineering pressure sensor active layers for improved performance. Advanced Functional Materials, 30(39), 2003491. https://doi.org/10.1002/adfm.202003491
  30. Huang, Y., Fan, X., Chen, S.-C., & Zhao, N. (2019). Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Advanced Functional Materials, 29(12), 1808509. https://doi.org/10.1002/adfm.201808509
  31. del Bosque, A., Sánchez-Romate, X. F., Sánchez, M., & Ureña, A. (2024). Toward flexible piezoresistive strain sensors based on polymer nanocomposites: a review on fundamentals, performance, and applications. Nanotechnology, 35(29), 292003. https://doi.org/10.1088/1361-6528/ad3e87
  32. Wang, L., & Li, Y. (2013). A Review for Conductive Polymer Piezoresistive Composites and a Development of a Compliant Pressure Transducer. IEEE Transactions on Instrumentation and Measurement, 62(2), 495-502. https://doi.org/10.1109/TIM.2012.2215160
  33. Cravanzola, S., Haznedar, G., Scarano, D., Zecchina, A., & Cesano, F. (2013). Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon, 62, 270-277. https://doi.org/10.1016/j.carbon.2013.05.064
  34. Zhang, W., Dehghani-Sanij, A. A., & Blackburn, R. S. (2007). Carbon based conductive polymer composites. Journal of Materials Science, 42(10), 3408-3418. https://doi.org/10.1007/s10853-007-1688-5
  35. Park, J., Lee, Y., Hong, J., Ha, M., Jung, Y.-D., Lim, H., Kim, S. Y., & Ko, H. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 8(5), 4689-697. https://doi.org/10.1021/nn500441k
  36. Chung, D. D. L. (2020). A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 55(32), 15367-15396. https://doi.org/10.1007/s10853-020-05099-z
  37. Shu, Q., Pang, Y., Li, Q., Gu, Y., Liu, Z., Liu, B., Li, J., & Li, Y. (2024). Flexible resistive tactile pressure sensors. Journal of Materials Chemistry A, 12(16), 9296-9321. https://doi.org/10.1039/d3ta06976a
  38. Zhao, Y., Shen, T., Zhang, M., Yin, R., Zheng, Y., Liu, H., Sun, H., Liu, C., & Shen, C. (2023). Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface. Nano Materials Science, 5(4), 343-350. https://doi.org/10.1016/j.nanoms.2021.10.002
  39. Tai, Y.-L., & Yang, Z.-G. (2015). Flexible pressure sensing film based on ultrasensitive SWCNT/PDMS spheres for monitoring human pulse signals. Journal of Materials Chemistry B, 3(27), 5436-5441. https://doi.org/10.1039/C5TB00653H
  40. Rinaldi, A., Tamburrano, A., Fortunato, M., & Sarto, M. S. (2016). A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. Sensors, 16(12), 2148. https://doi.org/10.3390/s16122148
  41. Yuan, J., Li, Q., Ding, L., Shi, C., Wang, Q., Niu, Y., & Xu, C. (2022). Carbon Black/Multi-Walled Carbon Nanotube-Based, Highly Sensitive, Flexible Pressure Sensor. ACS Omega, 7(48), 44428-44437. https://doi.org/10.1021/acsomega.2c06548
  42. Jing, M., Zhou, J., Zhang, P., Hou, D., Shen, J., Tian, J., & Chen, W. (2022). Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges. ACS Applied Materials & Interfaces, 14(49), 55119-55129. https://doi.org/10.1021/acsami.2c17879
  43. Zhou, Q., Chen, T., Cao, S., Xia, X., Bi, Y., & Xiao, X. (2021). A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film. Applied Physics A, 127(9), 667. https://doi.org/10.1007/s00339-021-04797-y
  44. Liu, Y., Zhang, Y., Lin, X., Lv, K.-h., Yang, P., Qiu, J., & Liu, G.-j. (2020). Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis. Micromachines, 11(9), 786. https://doi.org/10.3390/mi11090786
  45. Long, Z., Liu, X., Xu, J., Huang, Y., & Wang, Z. (2022). High-Sensitivity Flexible Piezoresistive Pressure Sensor Using PDMS/MWNTS Nanocomposite Membrane Reinforced with Isopropanol for Pulse Detection. Sensors, 22(13), 4765. https://doi.org/10.3390/s22134765
  46. Niu, D., Jiang, W., Ye, G., Wang, K., Yin, L., Shi, Y., Chen, B., Luo, F., & Liu, H. (2018). Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Materials Research Bulletin, 102, 92-99. https://doi.org/10.1016/j.materresbull.2018.02.005
  47. Tewari, A., Gandla, S., Bohm, S., McNeill, C. R., & Gupta, D. (2018). Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS applied materials & interfaces, 10(6), 5185-5195. https://doi.org/10.1021/acsami.7b15252
  48. Tung, T. T., Robert, C., Castro, M., Feller, J. F., Kim, T. Y., & Suh, K. S. (2016). Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 108, 450-460. https://doi.org/10.1016/j.carbon.2016.07.018
  49. Wagner, S., Yim, C., McEvoy, N., Kataria, S., Yokaribas, V., Kuc, A., Pindl, S., Fritzen, C.-P., Heine, T., Duesberg, G. S., & Lemme, M. C. (2018). Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano letters, 18(6), 3738-3745. https://doi.org/10.1021/acs.nanolett.8b00928
  50. Chen, D., Liu, Z., Li, Y., Sun, D., Liu, X., Pang, J., ... & Zhou, W. (2020). Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Applied Materials & Interfaces, 12(27), 30896-30904. https://doi.org/10.1021/acsami.0c02640
  51. Zhao, W., Natsuki, J., Trung, V. D., Li, H., Tan, J., Yang, W., & Natsuki, T. (2024). AgNPs/CNTs modified nonwoven fabric for PET-based flexible interdigitated electrodes in pressure sensor applications. Chemical Engineering Journal, 499, 156252. https://doi.org/10.1016/j.cej.2024.156252
  52. Balderrama, V. S., Leon-Gil, J. A., Fernández-Benavides, D. A., Ponce-Hernández, J., & Bandala-Sánchez, M. (2021). MEMS piezoresistive pressure sensor based on flexible PET thin-film for applications in gaseous-environments. IEEE Sensors Journal, 22(3). https://doi.org/1939-1947. 10.1109/JSEN.2021.3135543
  53. Zhu, Y., Jiang, S., Xiao, Y., Yu, J., Sun, L., & Zhang, W. (2018). A flexible three-dimensional force sensor based on PI piezoresistive film. Journal of Materials Science: Materials in Electronics, 29(23), 19830-19839. https://doi.org/10.1007/s10854-018-0111-0
  54. Li, Q., Luo, S., & Wang, Q. M. (2019). Piezoresistive thin film pressure sensor based on carbon nanotube-polyimide nanocomposites. Sensors and Actuators A: Physical, 295, 336-342. https://doi.org/10.1016/j.sna.2019.06.017
  55. Zhang, X., Li, N., Wang, G., Zhang, C., Zhang, Y., Zeng, F., Liu, H., Yi, G., & Wang, Z. (2023). Research status of polysiloxane-based piezoresistive flexible human electronic sensors. RSC advances, 13(24), 16693-16711. https://doi.org/10.1039/D3RA03258B
  56. Yoo, J., Kim, D.-Y., Kim, H., Hur, O.-N., & Park, S.-H. (2022). Comparison of Pressure Sensing Properties of Carbon Nanotubes and Carbon Black Polymer Composites. Materials, 15(3), 1213. https://doi.org/10.3390/ma15031213
  57. Cao, M., Fan, S., Qiu, H., Su, D., Li, L., & Su, J. (2020). CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge. ACS applied materials & interfaces, 12(32), 36540-36547. https://doi.org/10.1021/acsami.0c09813
  58. Devaraj, H., Yellapantula, K., Stratta, M., McDaid, A., & Aw, K. (2019). Embedded piezoresistive pressure sensitive pillars from piezoresistive carbon black composites towards a soft large-strain compressive load sensor. Sensors and Actuators A: Physical, 285, 645-651. https://doi.org/10.1016/j.sna.2018.12.006
  59. Karmakar, R. S., Lu, Y.-J., Fu, Y., Wei, K.-C., Chan, S.-H., Wu, M.-C., Lee, J.-W., Lin, T.-K., & Wang, J.-C. (2017). Cross-talk immunity of PEDOT: PSS pressure sensing arrays with gold nanoparticle incorporation. Scientific reports, 7(1), 12252. https://doi.org/10.1038/s41598-017-12420-5
  60. Wang, J., Zhang, C., Chen, D., Sun, M., Liang, N., Cheng, Q., Ji, Y., Gao, H., Guo, Z., Li, Y., Sun, D., Li, Q., & Liu, H. (2020). Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS. ACS Applied Materials & Interfaces, 12(46), 51854-51863. https://doi.org/10.1021/acsami.0c16152
  61. Chen, B., Li, H., Zhang, S., Lai, X., Zeng, X., Wu, X., Cheng, X., & Liu, H. (2022). High-performance and superhydrophobic piezoresistive pressure sensor based on mountain ridge-like microstructure by silver nanoparticles and reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 162, 107171. https://doi.org/10.1016/j.compositesa.2022.107171
  62. Han, X., Lv, Z., Ran, F., Dai, L., Li, C., & Si, C. (2021). Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. International Journal of Biological Macromolecules, 176, 78-86. https://doi.org/10.1016/j.ijbiomac.2021.02.055
  63. Oh, J., Kim, D.-Y., Kim, H., Hur, O.-N., & Park, S.-H. (2022). Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. Materials, 15(21), 7637. https://doi.org/10.3390/ma15217637
  64. Hwang, J., Jang, J., Hong, K., Kim, K. N., Han, J. H., Shin, K., & Park, C. E. (2011). Poly (3-hexylthiophene) wrapped carbon nanotube/poly (dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon, 49(1), 106-110. https://doi.org/10.1016/j.carbon.2010.08.048
  65. Park, J., Hwang, J. C., Kim, G. G., & Park, J. U. (2020). Flexible electronics based on one‐dimensional and two‐dimensional hybrid nanomaterials. InfoMat, 2(1), 33-56. https://doi.org/10.1002/inf2.12047
  66. Cai, B., Wang, L., Yu, F., Jia, J., Li, J., Li, X., Yang, X., Jiang, Y., & Lü, W. (2022). Compressible piezoresistive pressure sensor based on Ag nanowires wrapped conductive carbonized melamine foam. Applied Physics A, 128(1), 6. https://doi.org/10.1007/s00339-021-05143-y
  67. Liu, W. C., & Watt, A. A. (2021). Solvodynamically printed silver nanowire/ethylene-co-vinyl acetate composite films as sensitive piezoresistive pressure sensors. ACS Applied Nano Materials, 4(8), 7905-7916. https://doi.org/10.1021/acsanm.1c01229
  68. Xu, X., Wang, R., Nie, P., Cheng, Y., Lu, X., Shi, L., & Sun, J. (2017). Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS applied materials & interfaces, 9(16), 14273-14280. https://doi.org/10.1021/acsami.7b02087
  69. Zhu, Y., Hartel, M. C., Yu, N., Garrido, P. R., Kim, S., Lee, J., Bandaru, P., Guan, S., Lin, H., Emaminejad, S., de Barros, N. R., Ahadian, S., Kim, H.-J., Sun, W., Jucaud, V., Dokmeci, M. R., Weiss, P. S., Yan, R., & Khademhosseini, A. (2022). Epidermis‐inspired wearable piezoresistive pressure sensors using reduced graphene oxide self‐wrapped copper nanowire networks. Small Methods, 6(1), 2100900. https://doi.org/10.1002/smtd.202100900
  70. Jing, Z., Zhang, Q., Cheng, Y., Ji, C., Zhao, D., Liu, Y., Jia, W., Pan, S., & Sang, S. (2020). Highly sensitive, reliable and flexible piezoresistive pressure sensors based on graphene-PDMS@ sponge. Journal of Micromechanics and Microengineering, 30(8), 085012. https://doi.org/10.1088/1361-6439/ab948f
  71. Liu, W., Liu, N., Yue, Y., Rao, J., Cheng, F., Su, J., Liu, Z., & Gao, Y. (2018). Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small, 14(15), 1704149. https://doi.org/10.1002/smll.201704149
  72. Kwon, S. N., Kim, S. W., Kim, I. G., Hong, Y. K., & Na, S. I. (2019). Direct 3D Printing of graphene nanoplatelet/silver nanoparticle‐based nanocomposites for multiaxial piezoresistive sensor applications. Advanced Materials Technologies, 4(2), 1800500. https://doi.org/10.1002/admt.201800500
  73. Azam, M. U., Schiffer, A., & Kumar, S. (2024). Mechanical and piezoresistive properties of GNP/UHMWPE composites and their cellular structures manufactured via selective laser sintering. Journal of Materials Research and Technology, 28, 1359-1369. https://doi.org/10.1016/j.jmrt.2023.12.089
  74. Bhatt, B. B., Kumar, L., Kushwaha, A., & Gupta, D. (2021). An ultra-compressible piezoresistive strain and pressure sensor based on RGO-CNT-Melamine foam composite for biomedical sensing. Sensors and Actuators A: Physical, 331, 112875. https://doi.org/10.1016/j.sna.2021.112875
  75. Wu, J., Li, H., Lai, X., Chen, Z., & Zeng, X. (2020). Conductive and superhydrophobic F-rGO@ CNTs/chitosan aerogel for piezoresistive pressure sensor. Chemical Engineering Journal, 386, 123998. https://doi.org/10.1016/j.cej.2019.123998
  76. Zhang, X., Yang, W., Zhang, H., Xie, M., & Duan, X. (2021). PEDOT: PSS: From conductive polymers to sensors. Nanotechnology and Precision Engineering, 4(4). https://doi.org/10.1063/10.0006866
  77. Wang, J. C., Karmakar, R. S., Lu, Y. J., Huang, C. Y., & Wei, K. C. (2015). Characterization of piezoresistive PEDOT: PSS pressure sensors with inter-digitated and cross-point electrode structures. Sensors, 15(1), 818-831. https://doi.org/10.3390/s150100818
  78. Fan, X., Nie, W., Tsai, H., Wang, N., Huang, H., Cheng, Y., ... & Xia, Y. (2019). PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Advanced Science, 6(19), 1900813. https://doi.org/10.1002/advs.201900813
  79. Trifigny, N., Kelly, F. M., Cochrane, C., Boussu, F., Koncar, V., & Soulat, D. (2013). PEDOT: PSS-based piezo-resistive sensors applied to reinforcement glass fibres for in situ measurement during the composite material weaving process. Sensors, 13(8), 10749-10764. https://doi.org/10.3390/s130810749
  80. Dai, S.-W., Gu, Y.-L., Wu, Y.-X., Shen, S.-C., Zhang, C., Kong, T.-T., Li, Y.-T., Gong, L.-X., Zhang, G.-D., Zhao, L., & Tang, L.-C. (2021). Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor. Composites Part B: Engineering, 225, 109243. https://doi.org/10.1016/j.compositesb.2021.109243
  81. Zong, X., Zhang, N., Ma, X., Wang, J., & Zhang, C. (2025). Polymer-based flexible piezoresistive pressure sensors based on various micro/nanostructures array. Composites Part A: Applied Science and Manufacturing, 190, 108648. https://doi.org/10.1016/j.compositesa.2024.108648
  82. Baek, J., Shan, Y., Mylvaganan, M., Zhang, Y., Yang, X., Qin, F., Zhao, K., Song, H. W., Mao, H., & Lee, S. (2023). Mold‐Free Manufacturing of Highly Sensitive and Fast‐Response Pressure Sensors Through High‐Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers. Advanced Materials, 35(41), 2304070. https://doi.org/10.1002/adma.202304070
  83. Shi, J., Wang, L., Dai, Z., Zhao, L., Du, M., Li, H., & Fang, Y. (2018). Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small, 14(27), 1800819. https://doi.org/10.1002/smll.201800819
  84. Li, G., Chen, D., Li, C., Liu, W., & Liu, H. (2020). Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range. Advanced Science, 7(18), 2000154. https://doi.org/10.1002/advs.202000154
  85. Li, W., Jin, X., Han, X., Li, Y., Wang, W., Lin, T., & Zhu, Z. (2021). Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS applied materials & interfaces, 13(16), 19211-19220. https://doi.org/10.1021/acsami.0c22938
  86. Zhang, Y. X., He, Y., Liang, Y., Tang, J., Yang, Y., Song, H. M., ... & Chen, Y. M. (2023). Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel. Applied Surface Science, 615, 156328. https://doi.org/10.1016/j.apsusc.2023.156328
  87. Yang, J. C., Kim, J.-O., Oh, J., Kwon, S. Y., Sim, J. Y., Kim, D. W., Choi, H. B., & Park, S. (2019). Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS applied materials & interfaces, 11(21), 19472-19480. https://doi.org/10.1021/acsami.9b03261
  88. Hong, S. H., Chen, T., Wang, G., Popovic, S. M., Filleter, T., & Naguib, H. E. (2023). Room-temperature self-healing polysiloxane networks for highly sensitive piezoresistive pressure sensor with microdome structures. Chemical Engineering Journal, 471, 144429. https://doi.org/10.1016/j.cej.2023.144429
  89. Li, J., Wu, T., Jiang, H., Chen, Y., & Yang, Q. (2021). Ultrasensitive hierarchical piezoresistive pressure sensor for wide‐range pressure detection. Advanced Intelligent Systems, 3(11), 2100070. https://doi.org/10.1002/aisy.202100070
  90. Zhao, T., Li, T., Chen, L., Yuan, L., Li, X., & Zhang, J. (2019). Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS applied materials & interfaces, 11(32), 29466-29473. https://doi.org/10.1021/acsami.9b09265
  91. Cao, W., Luo, Y., Dai, Y., Wang, X., Wu, K., Lin, H., Rui, K., & Zhu, J. (2023). Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human-machine interface. ACS Applied Materials & Interfaces, 15(2), 3131-3140. https://doi.org/10.1021/acsami.2c18203
  92. Li, X., Li, X., Liu, T., Lu, Y., Shang, C., Ding, X., Zhang, J., Feng, Y., & Xu, F.-J. (2021). Wearable, washable, and highly sensitive piezoresistive pressure sensor based on a 3D sponge network for real-time monitoring human body activities. ACS Applied Materials & Interfaces, 13(39), 46848-46857. https://doi.org/10.1021/acsami.1c09975
  93. Oh, J., Kim, J.-O., Kim, Y., Choi, H. B., Yang, J. C., Lee, S., Pyatykh, M., Kim, J., Sim, J. Y., & Park, S. (2019). Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small, 15(33), 1901744. https://doi.org/10.1002/smll.201901744
  94. Pei, Z., Zhang, Q., Yang, K., Yuan, Z., Zhang, W., & Sang, S. (2021). A fully 3D‐printed wearable piezoresistive strain and tactile sensing array for robot hand. Advanced Materials Technologies, 6(7), 2100038. https://doi.org/10.1002/admt.202100038
  95. Takeda, Y., Wang, Y. F., Yoshida, A., Sekine, T., Kumaki, D., & Tokito, S. (2024). Advancing robotic gripper control with the integration of flexible printed pressure sensors. Advanced Engineering Materials, 26(9), 2302031. https://doi.org/10.1002/adem.202302031
  96. Georgopoulou, A., Michel, S., Vanderborght, B., & Clemens, F. (2021). Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sensors and Actuators A: Physical, 318, 112433. https://doi.org/10.1016/j.sna.2020.112433
  97. Xu, S., Xu, Z., Li, D., Cui, T., Li, X., Yang, Y., Liu, H., & Ren, T. (2023). Recent Advances in Flexible Piezoresistive Arrays: Materials, Design, and Applications. Polymers, 15(12), 2699. https://doi.org/10.3390/polym15122699
  98. Pyo, S., Eun, Y., Sim, J., Kim, K., & Choi, J. (2022). Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. Micro and Nano Systems Letters, 10(1), 9. https://doi.org/10.1186/s40486-022-00151-w
  99. Li, W., Jin, X., Han, X., Li, Y., Wang, W., Lin, T., & Zhu, Z. (2021). Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS applied materials & interfaces, 13(16), 19211-19220. https://doi.org/10.1021/acsami.0c22938
  100. Kim, J. S., So, Y., Lee, S., Pang, C., Park, W., & Chun, S. (2021). Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon, 181, 169-176. https://doi.org/10.1016/j.carbon.2021.04.096

Similar Articles

31-40 of 46

You may also start an advanced similarity search for this article.