Articles
Vol. 12 (2025)
Recent Advances in Nanomaterial-Based Flexible Piezoresistive Sensors for Robotic Tactile Sensing
Department of Information and Communication Engineering, Hannam University, Daejeon 34430, Republic of Korea
Department of Information and Communication Engineering, Hannam University, Daejeon 34430, Republic of Korea
Abstract
The expansion of industrial automation has underscored the critical role of robotic systems, where pressure sensors serve as essential interfaces for tactile feedback and precise manipulation. Flexible piezoresistive pressure sensors have become especially attractive because of their simple design, straightforward operation, and scalable fabrication. Recent progress in conductive nanomaterials such as carbon- and metal-based fillers, and engineered microstructures, including surface and porous designs in both single and hierarchical configurations, has significantly improved sensor sensitivity and broadened their operational range, demonstrating how material choice and structural engineering directly shape device performance. This review introduces the underlying physics of piezoresistivity and discusses the metrics commonly used to characterize sensor behavior, including sensitivity, gauge factor, and response time, before examining advances in nanomaterial integration and structural strategies that enable enhanced functionality. Applications highlight their integration into robotic fingertips and joints, where they provide force regulation, object recognition, and motion tracking, underscoring their importance in robotic control. Remaining challenges such as uniformity, reproducibility, and large-scale manufacturability continue to hinder widespread adoption, yet ongoing improvements in material systems and fabrication methods promise to address these limitations. Through the integration of material design, structural engineering, and performance evaluation, this work establishes a comprehensive link between fundamental principles and robotic applications, offering insights that can guide the development of next-generation tactile sensing technologies and opening pathways toward next-generation robotic systems empowered by highly sensitive and reliable pressure sensors.
References
- Acemoglu, D., & Restrepo, P. (2022). Demographics and Automation. The Review of Economic Studies, 89(1), 1-44. https://doi.org/10.1093/restud/rdab031
- Ivanov, V., Andrusyshyn, V., Pavlenko, I., Pitel, Jan., & Bulej, V. (2024). New classification of industrial robotic gripping systems for sustainable production. Scientific Reports, 14(1), 295. https://doi.org/10.1038/s41598-023-50673-5
- Chi, C., Sun, X., Xue, N., Li, T., & Liu, C. (2018). Recent progress in technologies for tactile sensors. Sensors, 18(4), 948. https://doi.org/10.3390/s18040948
- Piazza, C., Grioli, G., Catalano, M. G., & Bicchi, A. (2019). A Century of Robotic Hands. Annual Review of Control, Robotics, and Autonomous Systems, 2, 1-32. https://doi.org/10.1146/annurev-control-060117-105003
- Diana, M., Marescaux, J., (2015). Robotic surgery. British Journal of Surgery, 102(2), e15-e28. https://doi.org/10.1002/bjs.9711
- Jiang, X., Koo, K. M., Kikuchi, K., Konno, A., & Uchiyama, M. (2011). Robotized Assembly of a Wire Harness in a Car Production Line. Advanced Robotics, 25(3-4), 473-489. https://doi.org/10.1163/016918610X551782
- Bogue, R. (2011). Robots in the nuclear industry: a review of technologies and applications. Industrial Robot, 38(2), 113-118. https://doi.org/10.1108/01439911111106327
- Weiss, A., Buchner, R., Tscheligi, M., & Fischer, H. (2011, May). Exploring human-robot cooperation possibilities for semiconductor manufacturing. In 2011 international conference on collaboration technologies and systems (CTS) (pp. 173-177). IEEE. https://doi.org/10.1109/CTS.2011.5928683
- Almurib, H. A., Al-Qrimli, H. F., & Kumar, N. (2012, January). A review of application industrial robotic design. In 2011 Ninth International Conference on ICT and Knowledge Engineering (pp. 105-112). IEEE. https://doi.org/10.1109/ICTKE.2012.6152387
- Kappassov, Z., Corrales, J. A., & Perdereau, V. (2015). Tactile sensing in dexterous robot hands. Robotics and Autonomous Systems, 74, 195-220. https://doi.org/10.1016/j.robot.2015.07.015
- Lee, M. H., & Nicholls, H. R. (1999). Review Article Tactile sensing for mechatronics—a state of the art survey. Mechatronics, 9(1), 1-31. https://doi.org/10.1016/S0957-4158(98)00045-2
- Mao, C., Jin, J., Mei, D., & Wang, Y. (2024). Development of Kirigami-Patterned Stretchable Tactile Sensor Array with Soft Hinges for Highly Sensitive Force Detection. Advanced Sensor Research, 3(8), 2400012. https://doi.org/10.1002/adsr.202400012
- Georgopoulou, A., Michel, S., & Clemens, F. (2021). Sensorized Robotic Skin Based on Piezoresistive Sensor Fiber Composites Produced with Injection Molding of Liquid Silicone. Polymers, 13(8), 1226. https://doi.org/10.3390/polym13081226
- Fonseca, G., Nunes-Pereira, J., & Silva, A. P. (2023). 3D Printed Robotic Hand with Piezoresistive Touch Capability. Applied Sciences, 13(14), 8002. https://doi.org/10.3390/app13148002
- Wang, S., Wang, X., Gao, Z., Zhang, Y., Wang, L., Liu, Y., Liu, J., Rong, L., Peng, Z., & Ouyang, Q. (2025). A smart finger for robotic tactile sensing of surface/subsurface patterns based on a high-density piezoresistive sensor array. Biosensors and Bioelectronics, 289, 117858. https://doi.org/10.1016/j.bios.2025.117858
- Chen, Y., Yan, X., Zhu, Y., Cui, M., Kong, L., Kuang, M., Zhang, X., & Wang, R. (2022). A carbon nanotube-based textile pressure sensor with high-temperature resistance. RSC Advances, 12(36), 23091-23098. http://doi.org/10.1039/D2RA04036K
- Gao, L., Zhu, C., Li, L., Zhang, C., Liu, J., Yu, H.-D., & Huang, W. (2019). All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & Interfaces, 11(28), 25034-25042. https://doi.org/10.1021/acsami.9b07465
- Yao, J. L., Yang, X., Shao, N., Luo, H., Zhang, T., & Jiang, W. G. (2016). A flexible and highly sensitive piezoresistive pressure sensor based on micropatterned films coated with carbon nanotubes. Journal of Nanomaterials, 2016(1), 3024815. https://doi.org/10.1155/2016/3024815
- Mishra, R. B., El-Atab, N., Hussain, A. M., & Hussain, M. M. (2021). Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Advanced Materials Technologies, 6(4), 2001023. https://doi.org/10.1002/admt.202001023
- Ha, K.-H., Huh, H., Li, Z., & Lu, N. (2022). Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano, 16(3), 3442-3448. https://doi.org/10.1021/acsnano.2c00308
- Yang, Y., Pan, H., Xie, G., Jiang, Y., Chen, C., Su, Y., Wang, Y., & Tai, H. (2020). Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical, 301, 111789. https://doi.org/10.1016/j.sna.2019.111789
- Zhi, C., Shi, S., Si, Y., Fei, B., Huang, H., & Hu, J. (2023). Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning. Advanced Materials Technologies, 8(5), 2201161. https://doi.org/10.1002/admt.202201161
- Zhao, Y., Miao, L., Xiao, Y., & Sun, P. (2024). Research progress of flexible piezoresistive pressure sensor: A review. IEEE Sensors Journal. (pp. 31624-31644). IEEE. https://doi.org/10.1109/JSEN.2024.3443423
- Qiao, Z., Wei, A., Wang, K., Liu, Z., & Luo, N. (2022). Study of flexible piezoresistive sensors based on the hierarchical porous structure CNT /PDMS composite materials. Journal of Alloys and Compounds, 917, 165503. https://doi.org/10.1016/j.jallcom.2022.165503
- Yong, S., Chapman, J., & Aw, K. (2022). Soft and flexible large-strain piezoresistive sensors: On implementing proprioception, object classification and curvature estimation systems in adaptive, human-like robot hands. Sensors and Actuators A: Physical, 341, 113609. https://doi.org/10.1016/j.sna.2022.113609
- Chen, W., & Yan, X. (2020). Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science & Technology, 43, 175-188. https://doi.org/10.1016/j.jmst.2019.11.010
- Seesaard, T., & Wongchoosuk, C. (2023). Flexible and Stretchable Pressure Sensors: From Basic Principles to State-of-the-Art Applications. Micromachines, 14(8), 1638. https://doi.org/10.3390/mi14081638
- Kanoun, O., Bouhamed, A., Ramalingame, R., Bautista-Quijano, J. R., Rajendran, D., & Al-Hamry, A. (2021). Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors, 21(2), 341. https://doi.org/10.3390/s21020341
- Ruth, S. R. A., Feig, V. R., Tran, H., & Bao, Z. (2020). Microengineering pressure sensor active layers for improved performance. Advanced Functional Materials, 30(39), 2003491. https://doi.org/10.1002/adfm.202003491
- Huang, Y., Fan, X., Chen, S.-C., & Zhao, N. (2019). Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Advanced Functional Materials, 29(12), 1808509. https://doi.org/10.1002/adfm.201808509
- del Bosque, A., Sánchez-Romate, X. F., Sánchez, M., & Ureña, A. (2024). Toward flexible piezoresistive strain sensors based on polymer nanocomposites: a review on fundamentals, performance, and applications. Nanotechnology, 35(29), 292003. https://doi.org/10.1088/1361-6528/ad3e87
- Wang, L., & Li, Y. (2013). A Review for Conductive Polymer Piezoresistive Composites and a Development of a Compliant Pressure Transducer. IEEE Transactions on Instrumentation and Measurement, 62(2), 495-502. https://doi.org/10.1109/TIM.2012.2215160
- Cravanzola, S., Haznedar, G., Scarano, D., Zecchina, A., & Cesano, F. (2013). Carbon-based piezoresistive polymer composites: Structure and electrical properties. Carbon, 62, 270-277. https://doi.org/10.1016/j.carbon.2013.05.064
- Zhang, W., Dehghani-Sanij, A. A., & Blackburn, R. S. (2007). Carbon based conductive polymer composites. Journal of Materials Science, 42(10), 3408-3418. https://doi.org/10.1007/s10853-007-1688-5
- Park, J., Lee, Y., Hong, J., Ha, M., Jung, Y.-D., Lim, H., Kim, S. Y., & Ko, H. (2014). Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 8(5), 4689-697. https://doi.org/10.1021/nn500441k
- Chung, D. D. L. (2020). A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing. Journal of Materials Science, 55(32), 15367-15396. https://doi.org/10.1007/s10853-020-05099-z
- Shu, Q., Pang, Y., Li, Q., Gu, Y., Liu, Z., Liu, B., Li, J., & Li, Y. (2024). Flexible resistive tactile pressure sensors. Journal of Materials Chemistry A, 12(16), 9296-9321. https://doi.org/10.1039/d3ta06976a
- Zhao, Y., Shen, T., Zhang, M., Yin, R., Zheng, Y., Liu, H., Sun, H., Liu, C., & Shen, C. (2023). Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface. Nano Materials Science, 5(4), 343-350. https://doi.org/10.1016/j.nanoms.2021.10.002
- Tai, Y.-L., & Yang, Z.-G. (2015). Flexible pressure sensing film based on ultrasensitive SWCNT/PDMS spheres for monitoring human pulse signals. Journal of Materials Chemistry B, 3(27), 5436-5441. https://doi.org/10.1039/C5TB00653H
- Rinaldi, A., Tamburrano, A., Fortunato, M., & Sarto, M. S. (2016). A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets. Sensors, 16(12), 2148. https://doi.org/10.3390/s16122148
- Yuan, J., Li, Q., Ding, L., Shi, C., Wang, Q., Niu, Y., & Xu, C. (2022). Carbon Black/Multi-Walled Carbon Nanotube-Based, Highly Sensitive, Flexible Pressure Sensor. ACS Omega, 7(48), 44428-44437. https://doi.org/10.1021/acsomega.2c06548
- Jing, M., Zhou, J., Zhang, P., Hou, D., Shen, J., Tian, J., & Chen, W. (2022). Porous AgNWs/Poly(vinylidene fluoride) Composite-Based Flexible Piezoresistive Sensor with High Sensitivity and Wide Pressure Ranges. ACS Applied Materials & Interfaces, 14(49), 55119-55129. https://doi.org/10.1021/acsami.2c17879
- Zhou, Q., Chen, T., Cao, S., Xia, X., Bi, Y., & Xiao, X. (2021). A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film. Applied Physics A, 127(9), 667. https://doi.org/10.1007/s00339-021-04797-y
- Liu, Y., Zhang, Y., Lin, X., Lv, K.-h., Yang, P., Qiu, J., & Liu, G.-j. (2020). Improved High-Yield PMMA/Graphene Pressure Sensor and Sealed Gas Effect Analysis. Micromachines, 11(9), 786. https://doi.org/10.3390/mi11090786
- Long, Z., Liu, X., Xu, J., Huang, Y., & Wang, Z. (2022). High-Sensitivity Flexible Piezoresistive Pressure Sensor Using PDMS/MWNTS Nanocomposite Membrane Reinforced with Isopropanol for Pulse Detection. Sensors, 22(13), 4765. https://doi.org/10.3390/s22134765
- Niu, D., Jiang, W., Ye, G., Wang, K., Yin, L., Shi, Y., Chen, B., Luo, F., & Liu, H. (2018). Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Materials Research Bulletin, 102, 92-99. https://doi.org/10.1016/j.materresbull.2018.02.005
- Tewari, A., Gandla, S., Bohm, S., McNeill, C. R., & Gupta, D. (2018). Highly exfoliated MWNT-rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS applied materials & interfaces, 10(6), 5185-5195. https://doi.org/10.1021/acsami.7b15252
- Tung, T. T., Robert, C., Castro, M., Feller, J. F., Kim, T. Y., & Suh, K. S. (2016). Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 108, 450-460. https://doi.org/10.1016/j.carbon.2016.07.018
- Wagner, S., Yim, C., McEvoy, N., Kataria, S., Yokaribas, V., Kuc, A., Pindl, S., Fritzen, C.-P., Heine, T., Duesberg, G. S., & Lemme, M. C. (2018). Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano letters, 18(6), 3738-3745. https://doi.org/10.1021/acs.nanolett.8b00928
- Chen, D., Liu, Z., Li, Y., Sun, D., Liu, X., Pang, J., ... & Zhou, W. (2020). Unsymmetrical alveolate PMMA/MWCNT film as a piezoresistive E-skin with four-dimensional resolution and application for detecting motion direction and airflow rate. ACS Applied Materials & Interfaces, 12(27), 30896-30904. https://doi.org/10.1021/acsami.0c02640
- Zhao, W., Natsuki, J., Trung, V. D., Li, H., Tan, J., Yang, W., & Natsuki, T. (2024). AgNPs/CNTs modified nonwoven fabric for PET-based flexible interdigitated electrodes in pressure sensor applications. Chemical Engineering Journal, 499, 156252. https://doi.org/10.1016/j.cej.2024.156252
- Balderrama, V. S., Leon-Gil, J. A., Fernández-Benavides, D. A., Ponce-Hernández, J., & Bandala-Sánchez, M. (2021). MEMS piezoresistive pressure sensor based on flexible PET thin-film for applications in gaseous-environments. IEEE Sensors Journal, 22(3). https://doi.org/1939-1947. 10.1109/JSEN.2021.3135543
- Zhu, Y., Jiang, S., Xiao, Y., Yu, J., Sun, L., & Zhang, W. (2018). A flexible three-dimensional force sensor based on PI piezoresistive film. Journal of Materials Science: Materials in Electronics, 29(23), 19830-19839. https://doi.org/10.1007/s10854-018-0111-0
- Li, Q., Luo, S., & Wang, Q. M. (2019). Piezoresistive thin film pressure sensor based on carbon nanotube-polyimide nanocomposites. Sensors and Actuators A: Physical, 295, 336-342. https://doi.org/10.1016/j.sna.2019.06.017
- Zhang, X., Li, N., Wang, G., Zhang, C., Zhang, Y., Zeng, F., Liu, H., Yi, G., & Wang, Z. (2023). Research status of polysiloxane-based piezoresistive flexible human electronic sensors. RSC advances, 13(24), 16693-16711. https://doi.org/10.1039/D3RA03258B
- Yoo, J., Kim, D.-Y., Kim, H., Hur, O.-N., & Park, S.-H. (2022). Comparison of Pressure Sensing Properties of Carbon Nanotubes and Carbon Black Polymer Composites. Materials, 15(3), 1213. https://doi.org/10.3390/ma15031213
- Cao, M., Fan, S., Qiu, H., Su, D., Li, L., & Su, J. (2020). CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge. ACS applied materials & interfaces, 12(32), 36540-36547. https://doi.org/10.1021/acsami.0c09813
- Devaraj, H., Yellapantula, K., Stratta, M., McDaid, A., & Aw, K. (2019). Embedded piezoresistive pressure sensitive pillars from piezoresistive carbon black composites towards a soft large-strain compressive load sensor. Sensors and Actuators A: Physical, 285, 645-651. https://doi.org/10.1016/j.sna.2018.12.006
- Karmakar, R. S., Lu, Y.-J., Fu, Y., Wei, K.-C., Chan, S.-H., Wu, M.-C., Lee, J.-W., Lin, T.-K., & Wang, J.-C. (2017). Cross-talk immunity of PEDOT: PSS pressure sensing arrays with gold nanoparticle incorporation. Scientific reports, 7(1), 12252. https://doi.org/10.1038/s41598-017-12420-5
- Wang, J., Zhang, C., Chen, D., Sun, M., Liang, N., Cheng, Q., Ji, Y., Gao, H., Guo, Z., Li, Y., Sun, D., Li, Q., & Liu, H. (2020). Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS. ACS Applied Materials & Interfaces, 12(46), 51854-51863. https://doi.org/10.1021/acsami.0c16152
- Chen, B., Li, H., Zhang, S., Lai, X., Zeng, X., Wu, X., Cheng, X., & Liu, H. (2022). High-performance and superhydrophobic piezoresistive pressure sensor based on mountain ridge-like microstructure by silver nanoparticles and reduced graphene oxide. Composites Part A: Applied Science and Manufacturing, 162, 107171. https://doi.org/10.1016/j.compositesa.2022.107171
- Han, X., Lv, Z., Ran, F., Dai, L., Li, C., & Si, C. (2021). Green and stable piezoresistive pressure sensor based on lignin-silver hybrid nanoparticles/polyvinyl alcohol hydrogel. International Journal of Biological Macromolecules, 176, 78-86. https://doi.org/10.1016/j.ijbiomac.2021.02.055
- Oh, J., Kim, D.-Y., Kim, H., Hur, O.-N., & Park, S.-H. (2022). Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. Materials, 15(21), 7637. https://doi.org/10.3390/ma15217637
- Hwang, J., Jang, J., Hong, K., Kim, K. N., Han, J. H., Shin, K., & Park, C. E. (2011). Poly (3-hexylthiophene) wrapped carbon nanotube/poly (dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon, 49(1), 106-110. https://doi.org/10.1016/j.carbon.2010.08.048
- Park, J., Hwang, J. C., Kim, G. G., & Park, J. U. (2020). Flexible electronics based on one‐dimensional and two‐dimensional hybrid nanomaterials. InfoMat, 2(1), 33-56. https://doi.org/10.1002/inf2.12047
- Cai, B., Wang, L., Yu, F., Jia, J., Li, J., Li, X., Yang, X., Jiang, Y., & Lü, W. (2022). Compressible piezoresistive pressure sensor based on Ag nanowires wrapped conductive carbonized melamine foam. Applied Physics A, 128(1), 6. https://doi.org/10.1007/s00339-021-05143-y
- Liu, W. C., & Watt, A. A. (2021). Solvodynamically printed silver nanowire/ethylene-co-vinyl acetate composite films as sensitive piezoresistive pressure sensors. ACS Applied Nano Materials, 4(8), 7905-7916. https://doi.org/10.1021/acsanm.1c01229
- Xu, X., Wang, R., Nie, P., Cheng, Y., Lu, X., Shi, L., & Sun, J. (2017). Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS applied materials & interfaces, 9(16), 14273-14280. https://doi.org/10.1021/acsami.7b02087
- Zhu, Y., Hartel, M. C., Yu, N., Garrido, P. R., Kim, S., Lee, J., Bandaru, P., Guan, S., Lin, H., Emaminejad, S., de Barros, N. R., Ahadian, S., Kim, H.-J., Sun, W., Jucaud, V., Dokmeci, M. R., Weiss, P. S., Yan, R., & Khademhosseini, A. (2022). Epidermis‐inspired wearable piezoresistive pressure sensors using reduced graphene oxide self‐wrapped copper nanowire networks. Small Methods, 6(1), 2100900. https://doi.org/10.1002/smtd.202100900
- Jing, Z., Zhang, Q., Cheng, Y., Ji, C., Zhao, D., Liu, Y., Jia, W., Pan, S., & Sang, S. (2020). Highly sensitive, reliable and flexible piezoresistive pressure sensors based on graphene-PDMS@ sponge. Journal of Micromechanics and Microengineering, 30(8), 085012. https://doi.org/10.1088/1361-6439/ab948f
- Liu, W., Liu, N., Yue, Y., Rao, J., Cheng, F., Su, J., Liu, Z., & Gao, Y. (2018). Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small, 14(15), 1704149. https://doi.org/10.1002/smll.201704149
- Kwon, S. N., Kim, S. W., Kim, I. G., Hong, Y. K., & Na, S. I. (2019). Direct 3D Printing of graphene nanoplatelet/silver nanoparticle‐based nanocomposites for multiaxial piezoresistive sensor applications. Advanced Materials Technologies, 4(2), 1800500. https://doi.org/10.1002/admt.201800500
- Azam, M. U., Schiffer, A., & Kumar, S. (2024). Mechanical and piezoresistive properties of GNP/UHMWPE composites and their cellular structures manufactured via selective laser sintering. Journal of Materials Research and Technology, 28, 1359-1369. https://doi.org/10.1016/j.jmrt.2023.12.089
- Bhatt, B. B., Kumar, L., Kushwaha, A., & Gupta, D. (2021). An ultra-compressible piezoresistive strain and pressure sensor based on RGO-CNT-Melamine foam composite for biomedical sensing. Sensors and Actuators A: Physical, 331, 112875. https://doi.org/10.1016/j.sna.2021.112875
- Wu, J., Li, H., Lai, X., Chen, Z., & Zeng, X. (2020). Conductive and superhydrophobic F-rGO@ CNTs/chitosan aerogel for piezoresistive pressure sensor. Chemical Engineering Journal, 386, 123998. https://doi.org/10.1016/j.cej.2019.123998
- Zhang, X., Yang, W., Zhang, H., Xie, M., & Duan, X. (2021). PEDOT: PSS: From conductive polymers to sensors. Nanotechnology and Precision Engineering, 4(4). https://doi.org/10.1063/10.0006866
- Wang, J. C., Karmakar, R. S., Lu, Y. J., Huang, C. Y., & Wei, K. C. (2015). Characterization of piezoresistive PEDOT: PSS pressure sensors with inter-digitated and cross-point electrode structures. Sensors, 15(1), 818-831. https://doi.org/10.3390/s150100818
- Fan, X., Nie, W., Tsai, H., Wang, N., Huang, H., Cheng, Y., ... & Xia, Y. (2019). PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Advanced Science, 6(19), 1900813. https://doi.org/10.1002/advs.201900813
- Trifigny, N., Kelly, F. M., Cochrane, C., Boussu, F., Koncar, V., & Soulat, D. (2013). PEDOT: PSS-based piezo-resistive sensors applied to reinforcement glass fibres for in situ measurement during the composite material weaving process. Sensors, 13(8), 10749-10764. https://doi.org/10.3390/s130810749
- Dai, S.-W., Gu, Y.-L., Wu, Y.-X., Shen, S.-C., Zhang, C., Kong, T.-T., Li, Y.-T., Gong, L.-X., Zhang, G.-D., Zhao, L., & Tang, L.-C. (2021). Bamboo-inspired mechanically flexible and electrically conductive polydimethylsiloxane foam materials with designed hierarchical pore structures for ultra-sensitive and reliable piezoresistive pressure sensor. Composites Part B: Engineering, 225, 109243. https://doi.org/10.1016/j.compositesb.2021.109243
- Zong, X., Zhang, N., Ma, X., Wang, J., & Zhang, C. (2025). Polymer-based flexible piezoresistive pressure sensors based on various micro/nanostructures array. Composites Part A: Applied Science and Manufacturing, 190, 108648. https://doi.org/10.1016/j.compositesa.2024.108648
- Baek, J., Shan, Y., Mylvaganan, M., Zhang, Y., Yang, X., Qin, F., Zhao, K., Song, H. W., Mao, H., & Lee, S. (2023). Mold‐Free Manufacturing of Highly Sensitive and Fast‐Response Pressure Sensors Through High‐Resolution 3D Printing and Conformal Oxidative Chemical Vapor Deposition Polymers. Advanced Materials, 35(41), 2304070. https://doi.org/10.1002/adma.202304070
- Shi, J., Wang, L., Dai, Z., Zhao, L., Du, M., Li, H., & Fang, Y. (2018). Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small, 14(27), 1800819. https://doi.org/10.1002/smll.201800819
- Li, G., Chen, D., Li, C., Liu, W., & Liu, H. (2020). Engineered microstructure derived hierarchical deformation of flexible pressure sensor induces a supersensitive piezoresistive property in broad pressure range. Advanced Science, 7(18), 2000154. https://doi.org/10.1002/advs.202000154
- Li, W., Jin, X., Han, X., Li, Y., Wang, W., Lin, T., & Zhu, Z. (2021). Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS applied materials & interfaces, 13(16), 19211-19220. https://doi.org/10.1021/acsami.0c22938
- Zhang, Y. X., He, Y., Liang, Y., Tang, J., Yang, Y., Song, H. M., ... & Chen, Y. M. (2023). Sensitive piezoresistive pressure sensor based on micropyramid patterned tough hydrogel. Applied Surface Science, 615, 156328. https://doi.org/10.1016/j.apsusc.2023.156328
- Yang, J. C., Kim, J.-O., Oh, J., Kwon, S. Y., Sim, J. Y., Kim, D. W., Choi, H. B., & Park, S. (2019). Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS applied materials & interfaces, 11(21), 19472-19480. https://doi.org/10.1021/acsami.9b03261
- Hong, S. H., Chen, T., Wang, G., Popovic, S. M., Filleter, T., & Naguib, H. E. (2023). Room-temperature self-healing polysiloxane networks for highly sensitive piezoresistive pressure sensor with microdome structures. Chemical Engineering Journal, 471, 144429. https://doi.org/10.1016/j.cej.2023.144429
- Li, J., Wu, T., Jiang, H., Chen, Y., & Yang, Q. (2021). Ultrasensitive hierarchical piezoresistive pressure sensor for wide‐range pressure detection. Advanced Intelligent Systems, 3(11), 2100070. https://doi.org/10.1002/aisy.202100070
- Zhao, T., Li, T., Chen, L., Yuan, L., Li, X., & Zhang, J. (2019). Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials. ACS applied materials & interfaces, 11(32), 29466-29473. https://doi.org/10.1021/acsami.9b09265
- Cao, W., Luo, Y., Dai, Y., Wang, X., Wu, K., Lin, H., Rui, K., & Zhu, J. (2023). Piezoresistive pressure sensor based on a conductive 3D sponge network for motion sensing and human-machine interface. ACS Applied Materials & Interfaces, 15(2), 3131-3140. https://doi.org/10.1021/acsami.2c18203
- Li, X., Li, X., Liu, T., Lu, Y., Shang, C., Ding, X., Zhang, J., Feng, Y., & Xu, F.-J. (2021). Wearable, washable, and highly sensitive piezoresistive pressure sensor based on a 3D sponge network for real-time monitoring human body activities. ACS Applied Materials & Interfaces, 13(39), 46848-46857. https://doi.org/10.1021/acsami.1c09975
- Oh, J., Kim, J.-O., Kim, Y., Choi, H. B., Yang, J. C., Lee, S., Pyatykh, M., Kim, J., Sim, J. Y., & Park, S. (2019). Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small, 15(33), 1901744. https://doi.org/10.1002/smll.201901744
- Pei, Z., Zhang, Q., Yang, K., Yuan, Z., Zhang, W., & Sang, S. (2021). A fully 3D‐printed wearable piezoresistive strain and tactile sensing array for robot hand. Advanced Materials Technologies, 6(7), 2100038. https://doi.org/10.1002/admt.202100038
- Takeda, Y., Wang, Y. F., Yoshida, A., Sekine, T., Kumaki, D., & Tokito, S. (2024). Advancing robotic gripper control with the integration of flexible printed pressure sensors. Advanced Engineering Materials, 26(9), 2302031. https://doi.org/10.1002/adem.202302031
- Georgopoulou, A., Michel, S., Vanderborght, B., & Clemens, F. (2021). Piezoresistive sensor fiber composites based on silicone elastomers for the monitoring of the position of a robot arm. Sensors and Actuators A: Physical, 318, 112433. https://doi.org/10.1016/j.sna.2020.112433
- Xu, S., Xu, Z., Li, D., Cui, T., Li, X., Yang, Y., Liu, H., & Ren, T. (2023). Recent Advances in Flexible Piezoresistive Arrays: Materials, Design, and Applications. Polymers, 15(12), 2699. https://doi.org/10.3390/polym15122699
- Pyo, S., Eun, Y., Sim, J., Kim, K., & Choi, J. (2022). Carbon nanotube-graphene hybrids for soft electronics, sensors, and actuators. Micro and Nano Systems Letters, 10(1), 9. https://doi.org/10.1186/s40486-022-00151-w
- Li, W., Jin, X., Han, X., Li, Y., Wang, W., Lin, T., & Zhu, Z. (2021). Synergy of porous structure and microstructure in piezoresistive material for high-performance and flexible pressure sensors. ACS applied materials & interfaces, 13(16), 19211-19220. https://doi.org/10.1021/acsami.0c22938
- Kim, J. S., So, Y., Lee, S., Pang, C., Park, W., & Chun, S. (2021). Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon, 181, 169-176. https://doi.org/10.1016/j.carbon.2021.04.096
-
E.M. Nwanga,
K.C. Okafor,
G.A. Chukwudebe,
I.E. Achumba,
Computational Robotics: An Alternative Approach for Predicting Terrorist Networks
,
International Journal of Robotics and Automation Technology: Vol. 8 (2021)
-
Hirohisa Sakai,
Establishment of Body Auto Fitting Model “BAFM” Using “NJ-GPM” At Toyota
,
International Journal of Robotics and Automation Technology: Vol. 8 (2021)
-
Yingyan Yang,
Yuxiao Han,
Shuai Li,
Han Li,
Man Zhang,
Multi-Growth Period Tomato Fruit Detection Using Improved Yolov5
,
International Journal of Robotics and Automation Technology: Vol. 9 (2022)
-
Ahmed J. Abougarair,
Nasar Aldian A. Shashoa,
Widd E. Ben Guma,
Design and Implementation of a Traffic Control System Based on Congestion
,
International Journal of Robotics and Automation Technology: Vol. 9 (2022)
-
Nina Robson,
Gabrielle Martinez,
Michael Villavecer,
Justin Chin,
Bryan Hollowayi,
Salar Nosratabadi ,
Larry Tlilayatz,
Development of a Crutch Substitute for Mimicking Human Natural Walking Gait
,
International Journal of Robotics and Automation Technology: Vol. 1 No. 2 (2014)
-
Yongqiang Zhou,
Yimiao Chen,
Chunsheng Sun,
Qinhe Zhang,
Design and Simulation Analysis of Robot-Assisted Plate Internal Fixation Device for Lower Limb Fractures
,
International Journal of Robotics and Automation Technology: Vol. 10 (2023)
-
Jan Sovcik,
Jan Sovcik,
Martin Kajan,
Martin Kajan,
FrantiSek Duchoň,
FrantiSek Duchoň,
Martin Florek,
Martin Florek,
Peter Hubinsky,
Peter Hubinsky,
Khanh Duong Quang ,
Khanh Duong Quang ,
Coordinated Movement of Multiple Robots in Outdoor Environment with Obstacles Pages
,
International Journal of Robotics and Automation Technology: Vol. 1 No. 2 (2014)
-
Tzu-Chi Chan,
Yu-Ping Hong,
Jyun-Sian Yang,
Jia-Hong Yu,
Arindam Dutta,
Sabbella Veera Venkata Satyanarayana Reddy,
Design and Analysis of a High-Precision Horizontal Machine Tools
,
International Journal of Robotics and Automation Technology: Vol. 10 (2023)
-
Debanik Roy,
Rudra Prasanna Banerjee,
Concept Design of Reproductive Worm Robot: A Natural Inheritance of C.elegans Biological Worm
,
International Journal of Robotics and Automation Technology: Vol. 11 (2024)
-
Zhiyuan Wang,
Renwei Liu,
Xueyang Chen,
Todd Sparks,
Frank Liou,
Industrial Robot Trajectory Stiffness Mapping for Hybrid Manufacturing Process
,
International Journal of Robotics and Automation Technology: Vol. 3 No. 1 (2016)
You may also start an advanced similarity search for this article.