Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 12 (2025)

Stability Enhancement in High-Penetration Wind Power Grid Integration During Fault Conditions Using a Combined MBPSS and FACTS Device Approach

DOI:
https://doi.org/10.31875/2410-2199.2025.12.07
Submitted
September 25, 2025
Published
2025-10-01 — Updated on 2025-09-17

Abstract

This study investigates how a combination of Multi-Band Power System Stabilizers (MBPSS) and Flexible AC Transmission System (FACTS) devices might improve stability in power networks with significant wind energy penetration under fault conditions. Maintaining system stability becomes increasingly important as wind power integration rises, especially when there are disruptions that could cause electromechanical oscillations. The study uses MBPSS to model a wind turbine powered by a Doubly-Fed Induction Generator (DFIG) and assesses the performance of several FACTS devices, including Unified Power Flow Controllers (UPFC), Static Synchronous Series Compensators (SSSC), and Static Synchronous Compensators (STATCOM). According to simulation results, combining these technologies reduces oscillations significantly—for example, damping times decreased from 8 s (without controllers) to 3 s (with MBPSS and UPFC), and frequency deviations were maintained within ±0.5 Hz. These results demonstrate that the UPFC and MBPSS combination is the most effective in stabilizing the grid when wind energy levels are high.

References

  1. Elsharnoby, M. A., El-Banna, S. H., & Helmi, D. H. (2024). Maintaining system stability with high penetration of wind energy via fault ride through (FRT) criteria development (system operator perspective). International Journal of Renewable Energy Research (IJRER), *14*(4), 867-878.
  2. Aldossary, Y. M., Hewahi, N., & Alasaadi, A. (2023). Wind speed forecasting based on data decomposition and deep learning models: A case study of a wind farm in Saudi Arabia. International Journal of Renewable Energy Research (IJRER), *13*(3), 1285-1296.
  3. Gautam, D., Vittal, V., & Harbour, T. (2009). Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems. IEEE Transactions on Power Systems, *24*(3), 1426-1434. https://doi.org/10.1109/TPWRS.2009.2021234
  4. Abdulraheem, B. S., & Gan, C. K. (2016). Power system frequency stability and control: A survey. International Journal of Applied Engineering Research, *11*(8), 5688-5695.
  5. Mehdipour, C., Hajizadeh, A., & Mehdipour, I. (2016). Dynamic modeling and control of DFIG-based wind turbines under balanced network conditions. International Journal of Electrical Power & Energy Systems, *83*, 560-569. https://doi.org/10.1016/j.ijepes.2016.04.046
  6. Ifanda, I., Rostyono, D., Wijayanto, R. P., Hesty, N. W., Aziz, A., Fauziah, K., ... & Fudholi, A. (2023). Optimizing turbine siting and wind farm layout in Indonesia. International Journal of Renewable Energy Research (IJRER), *13*(3), 1351-1363.
  7. Heniche, A., & Kamwa, I. (2002). Control loops selection to damp inter-area oscillations of electrical networks. IEEE Transactions on Power Systems, *17*(2), 378-384. https://doi.org/10.1109/TPWRS.2002.1007907
  8. Bhadu, M., Punia, V. S., Bishnoi, S. K., & Rathor, B. (2017, October). Robust noise mitigation control techniques for SMIB power system. In 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN) (pp. 7-12). IEEE. https://doi.org/10.1109/IC3TSN.2017.8284441
  9. Rimorov, D., Heniche, A., Kamwa, I., Babaei, S., Stefopolous, G., & Fardanesh, B. (2017). Dynamic performance improvement of New York state power grid with multi‐functional multi‐band power system stabiliser‐based wide‐area control. IET Generation, Transmission & Distribution, *11*(18), 4537-4545. https://doi.org/10.1049/iet-gtd.2017.0288
  10. Arora, A., Bhadu, M., & Kumar, A. (2023, March). Stability enhancement of AC microgrid using discrete mode controllers with optimum sampling frequency. In International Conference on Renewable Power (pp. 943-962). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6749-0_64
  11. Gupta, P. (2015). Damping of power system oscillations using facts devices (Doctoral dissertation, JC Bose University).
  12. Ayres, H. M., Kopcak, I., Castro, M. S., Milano, F., & da Costa, V. F. (2010). A didactic procedure for designing power oscillation dampers of FACTS devices. Simulation Modelling Practice and Theory, *18*(6), 896-909. https://doi.org/10.1016/j.simpat.2010.02.007
  13. Taheri, H., Shahabi, S., Taheri, S., & Gholami, A. (2009, May). Application of synchronous static series compensator (SSSC) on enhancement of voltage stability and power oscillation damping. In IEEE EUROCON 2009 (pp. 533-539). IEEE. https://doi.org/10.1109/EURCON.2009.5167683
  14. Yarlagadda, V., Devulal, B., Kumar, C. S., Ambati, G., Jalluri, S. R., & Garikapati, A. K. (2024). Influence of hybrid FACTS device and STATCOM on power quality improvement of wind farm. Journal of Electrical Systems, *20*(10s), 104-115.
  15. Nayeripour, M., Narimani, M. R., Niknam, T., & Jam, S. (2011). Design of sliding mode controller for UPFC to improve power oscillation damping. Applied Soft Computing, *11*(8), 4766-4772. https://doi.org/10.1016/j.asoc.2011.07.006
  16. Lemdani, S., Laouer, M., & Allali, A. (2019). Stability improvement of power system using a coordinated systems FACTS-PSS, FACTS-MBPSS. International Journal of Systems and Software Engineering (IJSSP), *13*.
  17. Tiwari, A. K., Singh, M., Ralhan, S., & Sahu, N. (2021). Performance analysis of power system stability of four-machine system by using MBPSS and static compensator. In Intelligent Systems: Proceedings of SCIS 2021 (pp. 29-38). Springer Singapore. https://doi.org/10.1007/978-981-16-2248-9_4
  18. Kundur, P. (2007). Power system stability. In Power System Stability and Control (pp. 7-1). McGraw-Hill. https://doi.org/10.1201/9781420009248.sec2
  19. Zdiri, M. A., Dhouib, B., Alaas, Z., & Hadj Abdallah, H. (2023). A low-voltage AC, low-voltage DC, and high-voltage DC power distribution system with grid: Design and analysis. Applied Sciences, *13*(2), 808. https://doi.org/10.3390/app13020808
  20. Dhouib, B., Alaas, Z., Kahouli, O., & Haj Abdallah, H. (2020). Determination of optimal location of FACTS device to improve integration rate of wind energy in presence of MBPSS regulator. IET Renewable Power Generation, *14*(17), 3526-3540. https://doi.org/10.1049/iet-rpg.2020.0679
  21. Dhouib, B., Zdiri, M. A., Alaas, Z., & Hadj Abdallah, H. (2023). Fault analysis of a small PV/wind farm hybrid system connected to the grid. Applied Sciences, *13*(3), 1743. https://doi.org/10.3390/app13031743
  22. Kumkratug, P., & Haque, M. H. (2003, July). Improvement of stability region and damping of a power system by using SSSC. In 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491) (Vol. 3). IEEE.
  23. Mihalic, R., & Gabrijel, U. (2004). A structure-preserving energy function for a static series synchronous compensator. IEEE Transactions on Power Systems, *19*(3), 1501-1507. https://doi.org/10.1109/TPWRS.2004.826767
  24. Rahim, A. H. M. A., Al-Baiyat, S. A., & Al-Maghrabi, H. M. (2002). Robust damping controller design for a static compensator. IEE Proceedings-Generation, Transmission and Distribution, *149*(4), 491-496. https://doi.org/10.1049/ip-gtd:20020344
  25. Haque, M. H. (2004). Improvement of first swing stability limit by utilizing full benefit of shunt FACTS devices. IEEE Transactions on Power Systems, *19*(4), 1894-1902. https://doi.org/10.1109/TPWRS.2004.836243
  26. Meng, Z. J., & So, P. L. (2000, January). A current injection UPFC model for enhancing power system dynamic performance. In 2000 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 00CH37077) (Vol. 2, pp. 1544-1549). IEEE. https://doi.org/10.1109/PESW.2000.850212
  27. Kumkratug, P., & Haque, M. H. (2003). Versatile model of a unified power flow controller in a simple power system. IEE Proceedings-Generation, Transmission and Distribution, *150*(2), 155-161. https://doi.org/10.1049/ip-gtd:20030094
  28. Kumkratug, P., & Haque, M. H. (2003). Versatile model of a unified power flow controller in a simple power system. IEE Proceedings-Generation, Transmission and Distribution, 150(2), 155-161. https://doi.org/10.1049/ip-gtd:20030094

Similar Articles

1-10 of 55

You may also start an advanced similarity search for this article.