Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Study on Desktop Smart Production Line and Diagnosis Technology

DOI
https://doi.org/10.31875/2409-9694.2022.09.11
Submitted
December 8, 2022
Published
08.12.2022

Abstract

Abstract: Smart manufacturing is a development tendency in the manufacturing industry. Thus, this study aimed to construct a desktop smart production line using a virtual and a real system. The data measured by various sensors were collected and combined with an intelligent predictive diagnosis system to achieve online diagnosis, analysis, and prediction of the health status of the machine. We designed an interactive information collection service for the convenience of users. We allowed users to obtain specific information easily and quickly, improve the convenience of controllers and devices, and meet the need for long-term monitoring. Moreover, we focused on reducing production scenarios from cell manufacturing to factory product inspection using robotic arms, three-dimensional printers, and small and complex processing machines with intelligent predictive diagnostic systems. In this regard, the visual recognition function of the robotic arm can perform a product appearance inspection. Finally, in the machine network platform integrating all the controllers, when the machine fails, the information is sent to the user in real time through the communication service software, and the operator can take corresponding measures depending on the warning actions received, such as remote control of the machine, to ensure production efficiency and quality.

References

  1. Liu, G.Y; Chang, T.-Y.; Chiang, Y.-C.; Lin, P.-C.; Mar. J. Path Loss Measurements of Indoor LTE System for the Internet of Things. Appl. Sci. 2017, 7(6), 537. https://doi.org/10.3390/app7060537
  2. Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157-169. https://doi.org/10.1016/j.jmsy.2018.01.006
  3. Xiang, S. Shiqian industrial automatic assembly technology based on machine vision recognition. Manuf. Technol. 2021, 21(1), 141-148. https://doi.org/10.21062/mft.2021.018
  4. Gongal, A.; Karkee, M.; Amatya, S. Apple fruit size estimation using a 3D machine vision system. Inf. Process. Agric. 2018, 5(4), 498-503. https://doi.org/10.1016/j.inpa.2018.06.002
  5. Lee, J.; Lapira, E.; Bagheri, B.; and Kao, H. A. Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 2013, 1(1), 38-41. https://doi.org/10.1016/j.mfglet.2013.09.005
  6. LaCasse, P. M.; Otieno, W.; Maturana, F. P. A survey of feature set reduction approaches for predictive analytics models in the connected manufacturing enterprise. Appl. Sci. 2019, 9(5), 843. https://doi.org/10.3390/app9050843
  7. Fujishima, M.; Ohno, K.; Nishikawa, S.; Nishimura, K.; Sakamoto, M.; Kawai, K. Study of sensing technologies for machine tools. CIRP J. Manuf. Sci. Technol. 2016, 14, 71-75. https://doi.org/10.1016/j.cirpj.2016.05.005
  8. Farid, A. M. Measure of reconfigurability and its key characteristics in intelligent manufacturing systems. J. Intell. Manuf. 2017, 28, 353-369. https://doi.org/10.1007/s10845-014-0983-7
  9. Qureshi, F.F.; Iqbal, R.; Asghar, M.N. Energy efficient wireless communication technique based on cognitive radio for Internet of Things. J. Netw. Comput. Appl. 2017. https://doi.org/10.1016/j.jnca.2017.01.003
  10. Kumar, V.; Sudheesh Kumar, C.P. Investigation of the influence of coloured illumination on surface texture features: A Machine vision approach. J. Int. Meas. Confed. 2020, 152. https://doi.org/10.1016/j.measurement.2019.107297
  11. Wang, J.; Fu, P.; Gao, R. X. Machine vision intelligence for product defect inspection based on deep learning and Hough transform. J. Manuf. Syst. 2019, 51, 52-60. https://doi.org/10.1016/j.jmsy.2019.03.002
  12. Fantoni, G.; Santochi, M.; Dini, G.; Tracht, K.; Scholz-Reiter, B.; Fleischer, J.; Kristoffer, L. T.; Seliger, G.; Reinhart, G.; Franke, J.; Nørgaard Hansen, H.; Verl, A. Grasping devices and methods in automated production process. CIRP Annals - Manufacturing Technology, 2014, 63(2), 679-701. https://doi.org/10.1016/j.cirp.2014.05.006
  13. Zhang, L.; Zhang, H.; Yang, H.; Bian, G.-B.; Wu, W. Multi-target detection and grasping control for humanoid robot NAO. Int. J. Adapt. Control Signal Process. 2019, 33(7), 1225-1237. https://doi.org/10.1002/acs.3031
  14. Min, Y.; Xiao, B.; Dang, J.; Yue, B.; Cheng, T. Real time detection system for rail surface defects based on machine vision. Eurasip J. Image Video Process. 2018, 1. https://doi.org/10.1186/s13640-017-0241-y
  15. Dong, Y.; Qin, S. J. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. J. Process Control 2018, 67, 1-11. https://doi.org/10.1016/j.jprocont.2017.05.002
  16. Bi, Z.; Meruva, K. Modeling and prediction of fatigue life of robotic components in intelligent manufacturing. J. Intell. Manuf. 2019, 30, 2575-2585. https://doi.org/10.1007/s10845-016-1271-5
  17. Chan, T.-C.; Jian, Z.-K.; Wang, Y.-C. Study on the digital intelligent diagnosis of miniature machine tools. Appl. Sci. 2021, 11, 8372. https://doi.org/10.3390/app11188372
  18. Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.-K.; Sharma, S.; Singh, J.; Pimenov, D.-Y.; Giasin, K. An innovative agile model of smart lean-green approach for sustainability enhancement in industry 4.0. J. Open Innovat. Tech. Market Complex. 2021, 7, 215. https://doi.org/10.3390/joitmc7040215
  19. Azizi, A. Applications of artificial intelligence techniques in Industry 4.0. ISBN 978-981-13-2640-0 2018, 27-47. https://doi.org/10.1007/978-981-13-2640-0_4
  20. Zhang, W.J.; Luttervelt, C.A. van. Toward a resilient manufacturing system. CIRP Annals 2011, 60(1), 469-472. https://doi.org/10.1016/j.cirp.2011.03.041
  21. García, M.; Aguilar J. Emergent control in the context of industry 4.0, International Journal of Computer Integrated Manufacturing, 2022, 35, 247-262. https://doi.org/10.1080/0951192X.2021.1992653

Most read articles by the same author(s)