Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 2 (2015)

Moisture Flow as Driving Force behind Drying Shrinkage and Microcracking in Interfacial Transition Zone in Concrete

DOI
https://doi.org/10.15377/2409-9848.2015.02.02.3
Submitted
August 13, 2015
Published
2015-08-13

Abstract

In order to determine drying shrinkage in early age cementitious paste and ITZ, prior to a calculation of shrinkage coefficient and further complex coupling, experimental methods at micro-level and numerical methods at meso-level are separately performed as the initial steps. Digital images of a small-size 1-mm thick cement paste specimen with an embedded obstacle as a concrete model are captured at different magnifications and analyzed in drying experiments with Environmental Scanning Electron Microscope (ESEM) and Vic-2D. The drying shrinkage shows the dependence on image magnification, chosen Area of Interest (AOI) and RH variations. Numerical moisture flow/ drying simulations by Lattice Gas Automata (LGA) show the difference in a moisture gradient depending on the heterogeneity of the LGA domain (population with smaller and/ or larger solids). Expected higher moisture gradient around larger solids is confirmed in the LGA simulations, which could be an initial sign of gaps/microcracks in real ITZ.

References

  1. Mindess S. Tests to Determine the Mechanical Properties of the Interfacial Zone. Interfacial Transition Zone in Concrete. (ed. J.C. Maso). RILEM Report 11: 47-63. E and FN Spon, London. ISBN 041920010X.
  2. Struble L. Microstructure and Fracture at the Cement PasteAggregate Interface. MRS Proceedings 1987; 114: 11. doi:10.1557/PROC-114-11.
  3. Hsu TTC, Slate FO. Sturman GM and Winter G. Microcracking of Plain Concrete and the Shape of the StressStrain Curve. ACI Journal Proc 1963; 60 (2): 209-224.
  4. Hsu TTC and Slate FO. Tensile Bond Strength between Aggregate and Cement Paste or Mortar. ACI Journal, Proc 1963; 60 (4): 465-486.
  5. Slate FO. and Olsefski S. X-Rays for Study of Internal Structure and Microcracking of Concrete. ACI Journal, Proc 1963; 60 (5): 575-588.
  6. Ollivier JP and Massat M. The Effect of the Transition Zone on Transfer Properties of Concrete, Interfacial Transition Zone in Concrete. (ed. J.C. Maso). RILEM Report 11. 117-131. E and FN Spon, London. ISBN 041920010X.
  7. Yuan CZ and Odler I. The Interfacial Zone between Marble and Tricalcium Silicate. Cem and Con Res 1987; 17: 784-792. http://dx.doi.org/10.1016/0008-8846(87)90041-X
  8. L'Hermite RG. Volume Changes of Concrete. In Proc 4th Intern Symp on the Chemistry of Cement NBS, Washington DC Paper 1960; 3: 659-702.
  9. Jankovic D, Kuntz M and Van Mier JGM. Numerical Analysis of Moisture Flow and Concrete Cracking by means of Lattice Type Models. In Proc 4th Intern Conf on Fracture Mechanics of Concrete and Concrete Structures, May-June, 2001. (eds.R. de Borst, J. Mazars, G. Pijaudier-Cabot and J.G.M. van Mier). Cachan, France 2001; 1: 231-238. AA. Balkema Publishers. http://repository.tudelft.nl/view/ir/uuid:3d361e66- 66f9-4f35-b56e-c46f170162d4/
  10. Jankovic D and Van Mier JGM. Crack Development in Concrete due to Moisture Flow. HERON 2001; 46 (3): 169-180.
  11. Martinola G and Wittmann FH. Application of Fracture Mechanics to Optimize Repair Mortar Systems. In Proc 2nd Intern Conf on Fracture Mechanics of Concrete and Concrete Structures. (ed. F.H. Wittmann). Freiburg: 1995; 1481-1492. AEDIFICATIO Publishers, D-79104.
  12. Jankovic D and Van Mier JGM. Preliminary Investigation of Drying Shrinkage Cement Paste Specimens. In Intern Conf on New Challenges in Mesomechanics, Aalborg University, Denmark, August, 2002. (eds. R. Pyrz, J. Schjodt-Thomsen, J.C. Rauche, T. Thomsen and L.R. Jensen) 2002; 1: 265-271.
  13. Jankovic D. Nondestructive Determination of Drying Deformations in Cement Paste by means of ESEM and Digital Image Analysis. Optical Micro- and Nanometrology in Microsystems Technology II. (eds. C. Gorecki, A.K. Asundi, W. Osten). Proc. Of SPIE Europe Photonics Europe 7-10 April 2008, Strasbourg, France 2008; 6995: 69950G1-G12. http://dx.doi.org/10.1117/12.780731
  14. Jankovic D. ESEM Drying Tests: Microcracking Initiation in Thin Cement Paste due to Early Age Drying. In 2nd Intern. RILEM Workshop on Concrete Durability and Service Life Planning, ConcreteLife'09. Haifa, Israel 2009; 7-9: 507-514. ISBN 978 2 35158 074 5.
  15. Pihlajavaara SE. On the Main Features and Methods of Investigation of Drying and Related Phenomena in Concrete Ph D. Thesis University of Helsinki, Finland, Julkaisu 100 Publication Helsinki 1965.
  16. Frisch U, Hasslacher B and Pomeau Y. Lattice-Gas Automata for the Navier-Stokes Equation. Physical Review Letters 1986; 56 (14): 1505-1508. http://dx.doi.org/10.1103/PhysRevLett.56.1505
  17. Hsu TTC. Mathematical Analysis of Shrinkage Stresses in a Model of Hardened Concrete. ACI Journal Proc 1963; 60 (3): 371-390.
  18. Wolfram S. Cellular Automaton Fluids 1: Basic Theory. Journal of Statistical Physics 1986; 45: 471-526. http://dx.doi.org/10.1007/BF01021083
  19. Frisch U, d'Humieres D, Hasslacher B, Lallemand P, Pomeau Y and Rivet JP. Lattice Gas Hydrodynamics in Two and Three Dimensions. Complex Systems 1987; 1: 648-707.
  20. d'Humieres D and Lallemand P. Numerical Simulation of Hydrodynamics with Lattice Gas Automata in Two Dimensions. Complex Systems 1987; 1: 599-632.
  21. Jankovic D and Van Mier JGM. Drying of Porous Media: Numerical and Experimental Approach. In Computational Modeling of Concrete Structures, Proc Euro-C Conference 2003, eds. N. Bicanic, R. De Borst, H. Mang and G. Meschke, St. Johann im Pongau, Austria: 2003; 453-462. A.A. Balkema Publishers. http://repository.tudelft.nl/view/ir/ uuid:034463b4-919e-4fb8-8633-af1b2821a949/
  22. Chopard B and Droz M. Cellular Automata Modeling of Physical Systems. Cambridge University Press 1998. http://dx.doi.org/10.1017/CBO9780511549755