Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 5 (2018)

A New Magnetorheological Composite Gel and Its Controllable Rheological Behaviour

DOI
https://doi.org/10.31875/2409-9848.2018.05.9
Submitted
September 11, 2018
Published
2018-09-11

Abstract

A series of magnetorheological composite gels (MRCG) were prepared using carbonyl iron powder as the magnetic particles, a complex of methyl silicone oil and gelatin/agaropectin colloids as the matrix and various additives. The rheological behaviour of the samples was tested using a rheometer in rotary and oscillatory shear modes. The results demonstrate that rheological behaviour is significantly dependent on the colloid content of the matrix. The shear yield strength increases with increasing colloid content of the matrix and reaches a maximum of 92.1 kPa. The linear viscoelastic range of the MRCG is almost independent of colloid content. In addition, the shear storage modulus of the MRCG increases with increasing colloid content, and the maximum value of the change in absolute modulus is 2.526 MPa. Adding nanosized SiO2 can significantly improve the shear yield stress and broaden the controllable range of the MRCG under a magnetic field.

References

  1. F. Guo, XG. Lin, GJ. Yu, "The preparation and testing of rheological properties for single-and-double- grading magnetorheological composite gels", Key Eng Mater, 2013; 730: 65-71.
  2. T. Shiga, A. Okada, T. Kurauchi, "Magnetroviscoelastic behavior of composite gels", J Appl Polym Sci 1995; 58: 787- 792. https://doi.org/10.1002/app.1995.070580411
  3. B. Wei, XL. Gong, WQ. Jiang, et al, "Study on the properties of magnetorheological gel based on Polyurethane", J Appl Polym Sci 2010; 18: 2765-2771.
  4. HJ. Choi, BO. Park, BJ. Park, et al. "Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field", Colloid Polym Sci 2011; 289: 381-386.
  5. T. Mitsumata, N. Abe, "Giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels", Smart Mater Struct 2011; 20: article ID: 124003.
  6. JE. Kim, HJ. Choi, "Magnetic carbonyl iron particle dispersed in viscoelastic fluid and its magneto- rheological Property", IEEE Trans Magn 2011; 47: 3173-3176. https://doi.org/10.1109/TMAG.2011.2156396
  7. ZJ. Zhou, CR. Liao, L. Xie, Rui. Ju, DY. Zhang, R. Tang, "Preparation and rheological properties research for silica based on magneto-rheological viscoelastic fuild (MRVF)", J Func Mater 2013; 44: 2554-2558, (In Chinese).
  8. LJ. Qin, XL. Gong, WQ. Jiang, JF. Li, C. Peng, "Effect of iron powder content on rheological properties of magnetorheological glutin gels", Mater Mech Eng 2010; 34: 8-11, (In Chinese).
  9. A. Fuchs, M. Xin, F. Gordaninejad, et al, "Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels", J Appl Polym Sci 2004; 92: 1176-1182.
  10. A. Fuchs, B. Hu, F. Gordaninejad et al, "Synthesis and characterization of magnetorheological polyimide gels", J Appl Polym Sci 2005; 98: 2402-2413.
  11. F. Guo, CB. Du, RP. Li, "Research and characterization of damping dissipation of MREs based on silicone rubber", J Magn Mater Devices 2014; 45: 9-14, (In Chinese).
  12. JK. Wu, XL. Gong, YC. Fan, et al, "Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus", Soft Matter 2011; 7: 6205-6212.
  13. AM. Schmidt, R. Messing, "Perspectives for the mechanical manipulation of hybrid hydrogels", Polym Chem 2011; 2: 18- 32. https://doi.org/10.1039/C0PY00129E
  14. YG. Xu, TX. Liu, GJ. Liao, "Magneto-dependent stress relaxation of magnetorheological gels", Smart Mater Struct 2017; 26: article ID: 115005.
  15. T. Mitsumata, T. Wakabayashi, T. Okazaki, "Particle dispersibility and giant reduction in dynamic modulus of magnetic gels containing barium ferrite and iron oxide particles", J Phys Chem B 2008; 112: 14132-14139. https://doi.org/10.1021/jp805955j
  16. YG. Xu, XL. Gong, SH. Xuan, et al, "Creep and recovery behaviors of magnetorheological plastomer and its magneticdependent properties", Soft Matter 2012; 8: 8483-8492.
  17. JL. Viota, J. De Vicente, JDG. Duran, et al, "Stabilization of magnetorheological suspensions by polyacylic acid polymers", J Colloi Interface Sci 2005; 284: 527-41.
  18. B. Hu, A. Fuchs, S. Huseyin, et al, "Atom transfer radical polymerized MR fluids", Polymer 2006; 47: 7653-7663.
  19. JD. Carlson, MR. Jolly, "MR fluid, foam and elastomer devices", Mechatronics 2000; 10: 555-569. https://doi.org/10.1016/S0957-4158(99)00064-1
  20. M. Brigley, YT. Choi, NM. Wereley, et al, "Magnetorheological isolators using multiple fluid modes", J Intell Mater Syst Struct 2007; 18: 1143-1148.
  21. SB. Choi, SR. Hong, KG. Sung, et al, "Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount", Int J Mech Sci 2008; 50: 559.
  22. P. Martynowicz, "Control of a magnetorheological tuned vibration absorber for wind turbine application stilising the refined force tracking algorithm", J Low Freq Noise V A 2017; 36: 339-253. https://doi.org/10.1177/1461348417744299
  23. RP. Li, CB. Du, F. Guo, GJ. Yu, XG. Lin, "Performance of variable negative stiffness MRE vibration isolation system", Adv Mater Sci Eng 2015; article ID: 837657, pp. 1-8.
  24. YG. Xu, XL. Gong, SH. Xuan, "Soft magnetorheological polymer gels with controllable rheological properties", Smart Mater Struct 2013; 22: 075029. https://doi.org/10.1088/0964-1726/22/7/075029
  25. MT. Lopez-Lopez, A. Gomez-Ramirez, L. Rodriguez-Acro.et al, "Colloids on the frontier of ferrofluids", Rheological properties Langmuir 2012; 28: 6232-6245.
  26. F. Guo, CB. Du, GJ. Yu, RP. Li, "The static and dynamic mechanical properties of magnetorheological silly putty", Adv Mater Sci Eng 2016; article ID: 7079698, pp. 1-11.
  27. XL. Gong, YG. Xu, SH. Xuan, et al. "The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry", J Rheol 2012; 56: 1375- 1391.
  28. Poojary, R. Umanath, K. V. Gangadharan, "Integer and fractional order-based viscoelastic constitutive modeling to predict the frequency and magnetic field-induced properties of magnetorheological elastomer", J VIB ACOUST, vol 140, article ID: 041007, 2018.
  29. F. Guo, CB. Du, RP. Li, "Viscoelastic parameter model of magnetorheological elastomers based on abel dashpot", Adv Mater Sci Eng, vol 2014, article ID: 629386, pp.1-12.