Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Study of Composition Variation on Dielectric and Impedance Spectra of Tetragonal-Rhombohedral System in (1-x)BZT-(x)BCT Composites

DOI
https://doi.org/10.31875/2409-9848.2022.09.4
Submitted
March 3, 2022
Published
2022-03-03

Abstract

Abstract: In present work, (1-x)[BaZr0.2Ti0.8O3]-(x)[Ba0.7Ca0.3TiO3] (BZT-BCT) (where x = 0.50, 0.60 and 0.75) were fabricated by solid-state reaction technique. Structural, dielectric and impedance properties of the synthesized composites were investigated and discussed in detail. The X-ray diffraction technique shows that all the samples possessed a double-phase polycrystalline sample with a tetragonal-rhombohedral structure. Dielectric and impedance behavior were investigated in a wide range of temperatures (room temperature (RT) - 500˚C) and frequency (100 Hz ≤f ≤ 1 MHz). A broad dielectric constant peak was observed around the phase transition temperature.

References

  1. Jaffe WR. (1971). Cook, and H. Jaffe, Piezoelectric Ceramics. https://doi.org/10.1016/B978-0-12-379550-2.50015-6
  2. Moulson AJ, Herbert JM, & Ceramics E. (1990). Materials properties and Applications.
  3. Haertling GH. (1999). Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 82(4), 797-818. https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  4. Waanders JW. Piezoelectric Ceramics, Properties & Applications, Philips Components, Eindhoven, 1991. Google Scholar There is no corresponding record for this reference.
  5. Takenaka T, & Nagata H. (2005). Current status and prospects of lead-free piezoelectric ceramics. Journal of the European Ceramic Society, 25(12), 2693-2700. https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  6. Lee GM. (2004). Agency for Technology and Standards, Industry and Energy of the Korean Government. In Seminar on EU Product-Related Regulations (p. 6).
  7. Shrout TR, & Zhang SJ. (2020). Lead-free piezoelectric ceramics: Alternatives for PZT?. In Progress in Advanced Dielectrics (pp. 295-327). https://doi.org/10.1142/9789811210433_0006
  8. Mishra P, & Kumar P. (2012). Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT-BCT 50/50 ceramics. Journal of Alloys and Compounds, 545, 210-215. https://doi.org/10.1016/j.jallcom.2012.08.017
  9. Yoon MS, Khansur NH, Choi BK, Lee YG, & Ur SC. (2009). The effect of nano-sized BNBT on microstructure and dielectric/piezoelectric properties. Ceramics International, 35(8), 3027-3036. https://doi.org/10.1016/j.ceramint.2009.04.016
  10. Wu J, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, & Wang J. (2012). Composition and poling condition-induced electrical behavior of (Ba0. 85Ca0. 15)(Ti1− xZrx) O3 lead-free piezoelectric ceramics. Journal of the European Ceramic Society, 32(4), 891-898. https://doi.org/10.1016/j.jeurceramsoc.2011.11.003
  11. Lin W, Fan L, Lin D, Zheng Q, Fan X, & Sun H. (2013). Phase transition, ferroelectric and piezoelectric properties of Ba₁₋ ₓCaₓTi₁₋ yZryO₃ lead-free ceramics. Current applied physics.
  12. Wang P, Li Y, & Lu Y. (2011). Enhanced piezoelectric properties of (Ba0. 85Ca0. 15)(Ti0. 9Zr0. 1) O3 lead-free ceramics by optimizing calcination and sintering temperature. Journal of the European Ceramic Society, 31(11), 2005-2012. https://doi.org/10.1016/j.jeurceramsoc.2011.04.023
  13. Rani R, Sharma S, Rai R, & Kholkin AL. (2012). Doping effects of Li-Sb content on the structure and electrical properties of [(Na0. 5K0. 5) 1− x (Li) x (Sb) x (Nb) 1− xO3] lead-free piezoelectric ceramics. Materials Research Bulletin, 47(2), 381-386. https://doi.org/10.1016/j.materresbull.2011.11.003
  14. Chen T, Zhang T, Zhou J, Zhang J, Liu Y, & Wang G. (2012). Ferroelectric and piezoelectric properties of [(Ba1− 3x/2Bix) 0.85 Ca0. 15](Ti0. 90Zr0. 10) O3 lead-free piezoelectric ceramics. Materials Research Bulletin, 47(4), 1104-1106. https://doi.org/10.1016/j.materresbull.2012.01.017
  15. Prabu M, Banu IS, Gobalakrishnan S, & Chavali M. (2013). Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method. Journal of alloys and compounds, 551, 200-207. https://doi.org/10.1016/j.jallcom.2012.09.095
  16. Mishra P, & Kumar P. (2012). Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT-BCT 50/50 ceramics. Journal of Alloys and Compounds, 545, 210-215. https://doi.org/10.1016/j.jallcom.2012.08.017
  17. Liu W, & Ren X. (2009). Large piezoelectric effect in Pb-free ceramics. Physical review letters, 103(25), 257602. https://doi.org/10.1103/PhysRevLett.103.257602
  18. Bao H, Zhou C, Xue D, Gao J, & Ren X. (2010). A modified lead-free piezoelectric BZT-xBCT system with higher TC. Journal of Physics D: Applied Physics, 43(46), 465401. https://doi.org/10.1088/0022-3727/43/46/465401
  19. Su S, Zuo R, Lu S, Xu Z, Wang X, & Li L. (2011). Poling dependence and stability of piezoelectric properties of Ba (Zr0. 2Ti0. 8) O3-(Ba0. 7Ca0. 3) TiO3 ceramics with huge piezoelectric coefficients. Current Applied Physics, 11(3), S120-S123. https://doi.org/10.1016/j.cap.2011.01.034
  20. Li B, Blendell JE, & Bowman KJ. (2011). Temperature‐dependent poling behavior of lead‐free BZT-BCT piezoelectrics. Journal of the American Ceramic Society, 94(10), 3192-3194. https://doi.org/10.1111/j.1551-2916.2011.04758.x
  21. Wang W, He JY, Sun QF, Yang RY, Cui FJ, & Ren X. (2019). Enhanced Piezoelectric Properties and Temperature Stability of 0.5 BZT-0.5 BCT Ceramic Induced by Using Three-Step Synthesizing Method. ECS Journal of Solid State Science and Technology, 8(9), N134. https://doi.org/10.1149/2.0191909jss
  22. Tuan DA, Tung V, Chuong TV, Tinh NT, & Huong NTM. (2015). Structure, microstructure and dielectric properties of lead-free BCT-xBZT ceramics near the morphotropic phase boundary.
  23. Tan Y, Zhang J, Wu Y, Wang C, Koval V, Shi B, & Yan H. (2015). Unfolding grain size effects in barium titanate ferroelectric ceramics. Scientific reports, 5(1), 1-9. https://doi.org/10.1038/srep09953
  24. Xue D, Zhou Y, Bao H, Gao J, Zhou C, & Ren X. (2011). Large piezoelectric effect in Pb-free Ba (Ti, Sn) O3-x (Ba, Ca) TiO3 ceramics. Applied Physics Letters, 99(12), 122901. https://doi.org/10.1063/1.3640214
  25. Liu W, & Ren X. (2009). Large piezoelectric effect in Pb-free ceramics. Physical review letters, 103(25), 257602. https://doi.org/10.1103/PhysRevLett.103.257602
  26. Dobal PS, Dixit A, Katiyar RS, Yu Z, Guo R, & Bhalla A. S. (2001). Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO 3-BaZrO 3 system. Journal of Applied Physics, 89(12), 8085-8091. https://doi.org/10.1063/1.1369399
  27. Fu J, Zuo R, Wu SC, Jiang JZ, Li L, Yang TY, & Li L. (2012). Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Applied Physics Letters, 100(12), 122902. https://doi.org/10.1063/1.3696071
  28. Li W, Xu Z, Chu R, Fu P, & Zang G. (2010). Polymorphic phase transition and piezoelectric properties of (Ba1− xCax)(Ti0. 9Zr0. 1) O3 lead-free ceramics. Physica B: Condensed Matter, 405(21), 4513-4516. https://doi.org/10.1016/j.physb.2010.08.028
  29. Azároff LV. (1980). X-ray diffraction by liquid crystals. Molecular Crystals and Liquid Crystals, 60(1-2), 73-97. https://doi.org/10.1080/00268948008072426
  30. Kumar N, Sidhu GK, & Kumar R. (2019). Correlation of synthesis parameters to the phase segregation and lattice strain in tungsten oxide nanoparticles. Materials Research Express, 6(7), 075019. https://doi.org/10.1088/2053-1591/ab12a5
  31. Williamson GK, & Hall WH. (1953). X-ray line broadening from filed aluminium and wolfram. Acta metallurgica, 1(1), 22-31. https://doi.org/10.1016/0001-6160(53)90006-6
  32. Kumar P, Prakash C, Thakur OP, Chatterjee R, & Goel TC. (2006). Dielectric, ferroelectric and pyroelectric properties of PMNT ceramics. Physica B: Condensed Matter, 371(2), 313-316. https://doi.org/10.1016/j.physb.2005.10.107
  33. Bokov AA, & Ye ZG. (2020). Recent progress in relaxor ferroelectrics with perovskite structure. Progress in Advanced Dielectrics, 105-164. https://doi.org/10.1142/9789811210433_0003
  34. Liu Y, Pu Y, & Sun Z. (2014). Enhanced relaxor ferroelectric behavior of BCZT lead-free ceramics prepared by hydrothermal method. Materials Letters, 137, 128-131. https://doi.org/10.1016/j.matlet.2014.08.138
  35. Wang Z, Wang J, Chao X, Wei L, Yang B, Wang D, & Yang Z. (2016). Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba 0.85 Ca 0.15)(Ti 0.9 Zr 0.1) O 3 ceramics prepared by different methods. Journal of Materials Science: Materials in Electronics, 27(5), 5047-5058. https://doi.org/10.1007/s10854-016-4392-x
  36. Praveen JP, Karthik T, James AR, Chandrakala E, Asthana S, & Das D. (2015). Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. Journal of the European Ceramic Society, 35(6), 1785-1798. https://doi.org/10.1016/j.jeurceramsoc.2014.12.010
  37. Badapanda T, Sarangi S, Behera B, & Anwar S. (2014). Structural and impedance spectroscopy study of Samarium modified Barium Zirconium Titanate ceramic prepared by mechanochemical route. Current Applied Physics, 14(9), 1192-1200. https://doi.org/10.1016/j.cap.2014.06.007
  38. Dash U, Sahoo S, Chaudhuri P, Parashar SKS, & Parashar K. (2014). Electrical properties of bulk and nano Li 2 TiO 3 ceramics: A comparative study. Journal of Advanced Ceramics, 3(2), 89-97. https://doi.org/10.1007/s40145-014-0094-0
  39. Tiwari B, & Choudhary RNP. (2010). Study of impedance parameters of cerium modified lead zirconate titanate ceramics. IEEE Transactions on Dielectrics and Electrical Insulation, 17(1), 5-17. https://doi.org/10.1109/TDEI.2010.5411996
  40. Tiwari B, & Choudhary RNP. (2010). Frequency-temperature response of Pb (Zr0. 65− xCexTi0. 35) O3 ferroelectric ceramics: impedance spectroscopic studies. Journal of alloys and compounds, 493(1-2), 1-10. https://doi.org/10.1016/j.jallcom.2009.11.120
  41. Singh H, Kumar A, & Yadav KL. (2011). Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3-BaTiO3 ceramics. Materials Science and Engineering: B, 176(7), 540-547. https://doi.org/10.1016/j.mseb.2011.01.010
  42. Wang X, Liang P, Chao X, & Yang Z. (2015). Dielectric properties and impedance spectroscopy of MnCO3‐modified (Ba0. 85Ca0. 15)(Zr0. 1Ti0. 9) O3 lead‐free ceramics. Journal of the American Ceramic Society, 98(5), 1506-1514. https://doi.org/10.1111/jace.13481
  43. Chen X, Wang Y, Chen J, Zhou H, Fang L, & Liu L. (2013). Dielectric Properties and Impedance Analysis of K 0.5 Na 0.5 NbO 3-Ba 2 NaNb 5 O 15 Ceramics with Good Dielectric Temperature Stability. Journal of the American Ceramic Society, 96(11), 3489-3493. https://doi.org/10.1111/jace.12514
  44. Li YM, Liao RH, Jiang XP, & Zhang YP. (2009). Impedance spectroscopy and dielectric properties of Na0. 5Bi0. 5TiO3-K0. 5Bi0. 5TiO3 ceramics. Journal of Alloys and Compounds, 484(1-2), 961-965. https://doi.org/10.1016/j.jallcom.2009.05.087
  45. Ranjan R, Kumar R, Behera B, & Choudhary RNP. (2009). Structural and impedance spectroscopic studies of samarium modified lead zirconate titanate ceramics. Physica B: Condensed Matter, 404(20), 3709-3716. https://doi.org/10.1016/j.physb.2009.06.113
  46. Biswal MR, Nanda J, Mishra NC, Anwar S, & Mishra A. (2014). Dielectric and impedance spectroscopic studies of multiferroic BiFe1-xNixO3. Adv. Mater. Lett., 5(9), 531-537. https://doi.org/10.5185/amlett.2014.4566
  47. Dutta S, Choudhary RNP, & Sinha PK. (2007). Impedance spectroscopy studies on Fe3+ ion modified PLZT ceramics. Ceramics international, 33(1), 13-20. https://doi.org/10.1016/j.ceramint.2005.07.010
  48. Sen S, Choudhary RNP, Tarafdar A, & Pramanik P. (2006). Impedance spectroscopy study of strontium modified lead zirconate titanate ceramics. Journal of applied physics, 99(12), 124114. https://doi.org/10.1063/1.2206850
  49. Macdonald JR. (1987). Impedance spectroscopy (Vol. 346). Wiley, New York.
  50. Das PS, Chakraborty PK, Behera B, & Choudhary RNP. (2007). Electrical properties of Li2BiV5O15 ceramics. Physica B: Condensed Matter, 395(1-2), 98-103. https://doi.org/10.1016/j.physb.2007.02.065
  51. Jha AK. (2013). Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy. Bulletin of Materials Science, 36(1), 135-141. https://doi.org/10.1007/s12034-013-0420-0
  52. Behera AK, Mohanty NK, Satpathy SK, Behera B, & Nayak P. (2014). Investigation of complex impedance and modulus properties of Nd doped 0.5 BiFeO 3-0.5 PbTiO 3 multiferroic composites. Central European Journal of Physics, 12(12), 851-861. https://doi.org/10.2478/s11534-014-0523-2
  53. Shukla A, & Choudhary RNP. (2011). High-temperature impedance and modulus spectroscopy characterization of La3+/Mn4+ modified PbTiO3 nanoceramics. Physica B: Condensed Matter, 406(13), 2492-2500. https://doi.org/10.1016/j.physb.2011.03.030
  54. Ortega N, Kumar A, Bhattacharya P, Majumder SB, & Katiyar RS. (2008). Impedance spectroscopy of multiferroic Pb Zr x Ti 1− x O 3∕ Co Fe 2 O 4 layered thin films. Physical review B, 77(1), 014111. https://doi.org/10.1103/PhysRevB.77.014111
  55. Bergman, R. (2000). General susceptibility functions for relaxations in disordered systems. Journal of Applied Physics, 88(3), 1356-1365. https://doi.org/10.1063/1.373824
  56. Gerhardt R. (1994). Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. Journal of Physics and Chemistry of Solids, 55(12), 1491-1506. https://doi.org/10.1016/0022-3697(94)90575-4