Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Biodegradable Materials Used in FDM 3D Printing Technology: A Critical Review

DOI
https://doi.org/10.31875/2409-9848.2022.09.11
Submitted
January 3, 2023
Published
2022-12-31

Abstract

Abstract: Three-dimensional (3D) printing is a flexible technique that has attracted increasing interest in recent years. 3D printing has powerful biodegradable materials that are important for environmental protection and emergencies such as COVID-19. To achieve better compatibility for customized and enhanced material characteristics, a variety of ways have been used. Companies and researchers are increasingly interested in biodegradable polymers and composites due to their easy production, eco-friendly, and suitability for a variety of applications. One small step toward protecting the world around us is the use of natural resources to produce fully or partially biodegradable composite materials. PHA (Polyhydroxyalkanoates), PLA (Polylacticacid), High impact polystyrene (HIPS), and PHB (Polyhydroxybutyrates) are examples of bioplastics that are produced and have similar functionality to conventional plastics while also being biodegradable. These materials have the potential to reduce our reliance on petroleum-based plastic, which may present environmental risks. Every country desperately needs to develop bioplastic usage and proper waste management for a pollution-free world. This review is expected to provide a general overview for 3D-printed biodegradable polymer and their applications using fused deposition modelling (FDM) technology.

References

  1. Negrin M, Macerata E, Consolati G, Quasso F, Genovese L, Soccio M, et al. Gamma radiation effects on random copolymers based on poly(butylene succinate) for packaging applications. Radiat Phys Chem. 2018; 142: 34-43. https://linkinghub.elsevier.com/retrieve/pii/S0969806X16305850. https://doi.org/10.1016/j.radphyschem.2017.05.011
  2. Calabia B, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, ety al. Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers. 2013; 5: 128-41. https://doi.org/10.3390/polym5010128
  3. Boparai KS, Singh R. Thermoplastic composites for fused deposition modeling filament: Challenges and applications. Elsevier; 2018. https://doi.org/10.1016/B978-0-12-803581-8.11409-2
  4. Mohamed OA, Masood SH, Bhowmik JL, Somers AE. Investigation on the tribological behavior and wear mechanism of parts processed by fused deposition additive manufacturing process. J Manuf Process. Elsevier; 2017; 29: 149-59. https://doi.org/10.1016/j.jmapro.2017.07.019
  5. Zhang P, Wang Z, Li J, Li X, Cheng L. From materials to devices using fused deposition modeling: A state-of-art review. Nanotechnol Rev. 2020; 9: 1594-609. https://doi.org/10.1515/ntrev-2020-0101
  6. Murawski A, Diaz R, Inglesby S, Delabar K, Quirino RL. Synthesis of Bio-based Polymer Composites: Fabrication, Fillers, Properties, and Challenges. In: Sadasivuni KK, Ponnamma D, Rajan M, Ahmed B, Al-Maadeed MASA, editors. Polym Nanocomposites Biomed Eng. Cham: Springer International Publishing; 2019; 29-55. https://doi.org/10.1007/978-3-030-04741-2_2
  7. Mazzanti V, Malagutti L, Mollica F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers. Multidisciplinary Digital Publishing Institute; 2019; 11: 1094. https://doi.org/10.3390/polym11071094
  8. Wohlers T, Gornet T. History of additive manufacturing. Wohlers Rep. 2014; 24: 118.
  9. Ahn D, Kweon J-H, Choi J, Lee S. Quantification of surface roughness of parts processed by laminated object manufacturing. J Mater Process Technol. 2012; 212: 339-46. https://linkinghub.elsevier.com/retrieve/pii/S0924013611002391. https://doi.org/10.1016/j.jmatprotec.2011.08.013
  10. Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016; 503: 207-12. https://linkinghub.elsevier.com/retrieve/pii/S0378517316302150 https://doi.org/10.1016/j.ijpharm.2016.03.016
  11. D. Slavko and K. Matic,. Selective laser sintering of composite materials technologies. Annals of DAAAM & Proceedings; 2010.
  12. N. Turner B, Strong R, A. Gold S. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J. 2014; 20: 192-204. https://doi.org/10.1108/RPJ-01-2013-0012
  13. Cuiffo MA, Snyder J, Elliott AM, Romero N, Kannan S, Halada GP. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl Sci. 2017; 7: 579. https://doi.org/10.3390/app7060579
  14. Ni F, Wang G, Zhao H. Fabrication of water-soluble poly(vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application: ARTICLE. J Appl Polym Sci. 2017; 134. https://doi.org/10.1002/app.44966
  15. Xiao J, Gao Y. The manufacture of 3D printing of medical grade TPU. Prog Addit Manuf. 2017; 2: 117-23. https://doi.org/10.1007/s40964-017-0023-1
  16. Chunze Y, Yusheng S, Jinsong Y, Jinhui L. A Nanosilica/Nylon-12 Composite Powder for Selective Laser Sintering. J Reinf Plast Compos. 2009; 28: 2889-902. https://doi.org/10.1177/0731684408094062
  17. Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol. 2019; 102: 2877-89. https://doi.org/10.1007/s00170-019-03332-x
  18. Sun Q, Rizvi GM, Bellehumeur CT, Gu P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J. 2008; 14: 72-80. https://doi.org/10.1108/13552540810862028
  19. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018; 143: 172-96. https://doi.org/10.1016/j.compositesb.2018.02.012
  20. Nath SD, Nilufar S. An Overview of Additive Manufacturing of Polymers and Associated Composites. Polymers. 2020; 12: 2719. https://doi.org/10.3390/polym12112719
  21. Pu'ad NM, Haq RA, Noh HM, Abdullah HZ, Idris MI, Lee TC. Review on the fabrication of fused deposition modelling (FDM) composite filament for biomedical applications. Mater Today Proc. Elsevier; 2020; 29: 228-32. https://doi.org/10.1016/j.matpr.2020.05.535
  22. Quanjin M, Rejab MRM, Idris MS, Kumar NM, Abdullah MH, Reddy GR. Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective. Procedia Comput Sci. 2020; 167: 1210-9. https://linkinghub.elsevier.com/retrieve/pii/S1877050920309017. https://doi.org/10.1016/j.procs.2020.03.434
  23. Saroia J, Wang Y, Wei Q, Lei M, Li X, Guo Y, et al. A review on 3D printed matrix polymer composites: its potential and future challenges. Int J Adv Manuf Technol. Springer; 2020; 106: 1695-721. https://doi.org/10.1007/s00170-019-04534-z
  24. Yang E, Miao S, Zhong J, Zhang Z, Mills DK, Zhang LG. Bio-based polymers for 3D printing of bioscaffolds. Polym Rev. Taylor & Francis; 2018; 58: 668-87. https://doi.org/10.1080/15583724.2018.1484761
  25. Wickramasinghe S, Do T, Tran P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers. 2020; 12: 1529. https://doi.org/10.3390/polym12071529
  26. Ma Q, Rejab MRM, Hassan SA, Hu H, Kumar AP. Potentiality of MWCNT on 3D-printed bio-inspired spherical-roof cubic core under quasi-static loading. J Mech Behav Biomed Mater. 2022; 136: 105514. https://linkinghub.elsevier.com/retrieve/pii/S1751616122004192. https://doi.org/10.1016/j.jmbbm.2022.105514
  27. Bakarich SE, Gorkin R, in het Panhuis M, Spinks GM. Three-Dimensional Printing Fiber Reinforced Hydrogel Composites. ACS Appl Mater Interfaces. 2014; 6: 15998-6006. https://doi.org/10.1021/am503878d
  28. Dudek P. FDM 3D Printing Technology in Manufacturing Composite Elements. Arch Metall Mater. 2013; 58: 1415-8. http://journals.pan.pl/dlibra/publication/102133/edition/88150/content. https://doi.org/10.2478/amm-2013-0186
  29. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers. 2021; 13: 3101. https://doi.org/10.3390/polym13183101
  30. Mostafa N, Syed HM, Igor S, Andrew G. A study of melt flow analysis of an ABS-Iron composite in fused deposition modelling process. Tsinghua Sci Technol. Elsevier; 2009; 14: 29-37. https://doi.org/10.1016/S1007-0214(09)70063-X
  31. Onwubolu GC, Rayegani F. Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int J Manuf Eng. Hindawi; 2014; 2014. https://doi.org/10.1155/2014/598531
  32. Park S, Fu K (Kelvin). Polymer-based filament feedstock for additive manufacturing. Compos Sci Technol. 2021; 213: 108876. https://linkinghub.elsevier.com/retrieve/pii/S0266353821002323. https://doi.org/10.1016/j.compscitech.2021.108876
  33. Wang Q, Ji C, Sun L, Sun J, Liu J. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Molecules. 2020; 25: 2319. https://doi.org/10.3390/molecules25102319
  34. Kuo C-C, Liu L-C, Teng W-F, Chang H-Y, Chien F-M, Liao S-J, et al. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B Eng. Elsevier; 2016; 86: 36-9. https://doi.org/10.1016/j.compositesb.2015.10.005
  35. Rutkowski JV, Levin BC. Acrylonitrile-butadiene-styrene copolymers (ABS): Pyrolysis and combustion products and their toxicity-a review of the literature. Fire Mater. Wiley Online Library; 1986; 10: 93-105. https://doi.org/10.1002/fam.810100303
  36. Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim Y-J. Lasers in additive manufacturing: A review. Int J Precis Eng Manuf-Green Technol. 2017; 4: 307-22. https://doi.org/10.1007/s40684-017-0037-7
  37. Kauffman GB. Book Review of Polymer Data Handbook. ACS Publications; 2010.
  38. Terekhina S, Skornyakov I, Tarasova T, Egorov S. Effects of the infill density on the mechanical properties of nylon specimens made by filament fused fabrication. Technologies. Multidisciplinary Digital Publishing Institute; 2019; 7: 57. https://doi.org/10.3390/technologies7030057
  39. Cho B-G, McCarthy SP, Fanucci JP, Nolet SC. Fiber reinforced nylon‐6 composites produced by the reaction injection pultrusion process. Polym Compos. Wiley Online Library; 1996; 17: 673-81. https://doi.org/10.1002/pc.10659
  40. Mark JE, editor. Polymer data handbook. 2nd ed. Oxford ; New York: Oxford University Press; 2009.
  41. Latko-Durałek P, Dydek K, Boczkowska A. Thermal, rheological and mechanical properties of PETG/RPETG blends. J Polym Environ. Springer; 2019; 27: 2600-6. https://doi.org/10.1007/s10924-019-01544-6
  42. Domb AJ, Kumar N, Ezra A, editors. Biodegradable Polymers in Clinical Use and Clinical Development: Domb/Biodegradable Polymers. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011. https://doi.org/10.1002/9781118015810
  43. Hacker M, Mikos A. Foundations of Regenerative Medicine: Clinical and Therapeutic Applications. Academic press, London; 2009.
  44. Luten J, van Nostrum CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Controlled Release. Elsevier; 2008; 126: 97-110. https://doi.org/10.1016/j.jconrel.2007.10.028
  45. Gunatillake PA, Adhikari R, Gadegaard N. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003; 5: 1-16. https://doi.org/10.22203/eCM.v005a01
  46. Gunatillake P, Mayadunne R, Adhikari R, El-Gewely MR. Biotechnol Annu Rev. 2006.
  47. Markstedt K, Sundberg J, Gatenholm P. 3D bioprinting of cellulose structures from an ionic liquid. 3D Print Addit Manuf. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2014; 1: 115-21. https://doi.org/10.1089/3dp.2014.0004
  48. Hunt EJ, Zhang C, Anzalone N, Pearce JM. Polymer recycling codes for distributed manufacturing with 3-D printers. Resour Conserv Recycl. 2015; 97: 24-30. https://linkinghub.elsevier.com/retrieve/pii/S0921344915000269. https://doi.org/10.1016/j.resconrec.2015.02.004
  49. Duran C, Subbian V, Giovanetti MT, Simkins JR, Beyette Jr FR. Experimental desktop 3D printing using dual extrusion and water-soluble polyvinyl alcohol. Rapid Prototyp J. Emerald Group Publishing Limited; 2015. https://doi.org/10.1108/RPJ-09-2014-0117
  50. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015; 9: 4. https://doi.org/10.1186/s13036-015-0001-4
  51. Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. Elsevier; 2013; 9: 5521-30. https://doi.org/10.1016/j.actbio.2012.10.041
  52. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015; 96: 380-7. https://linkinghub.elsevier.com/retrieve/pii/S0939641115003306. https://doi.org/10.1016/j.ejpb.2015.07.027
  53. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. Elsevier; 2015; 30: 360-7. https://doi.org/10.1016/j.jddst.2015.07.016
  54. Kim K, Park J, Suh J, Kim M, Jeong Y, Park I. 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sens Actuators Phys. Elsevier; 2017; 263: 493-500. https://doi.org/10.1016/j.sna.2017.07.020
  55. Kumar R, Singh R, Farina I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res Rev. Emerald Publishing Limited; 2018. https://doi.org/10.1108/PRR-07-2018-0018
  56. Rodríguez-Panes A, Claver J, Camacho AM. The influence of manufacturing parameters on the mechanical behaviour of PLA and ABS pieces manufactured by FDM: A comparative analysis. Materials. Multidisciplinary Digital Publishing Institute; 2018; 11: 1333. https://doi.org/10.3390/ma11081333
  57. Dey A, Hoffman D, Yodo N. Optimizing multiple process parameters in fused deposition modeling with particle swarm optimization. Int J Interact Des Manuf IJIDeM. Springer; 2020; 14: 393-405. https://doi.org/10.1007/s12008-019-00637-9
  58. de Ciurana J, Serenóa L, Vallès È. Selecting Process Parameters in RepRap Additive Manufacturing System for PLA Scaffolds Manufacture. Procedia CIRP. 2013; 5: 152-7. https://linkinghub.elsevier.com/retrieve/pii/S2212827113000322. https://doi.org/10.1016/j.procir.2013.01.031
  59. Jerez-Mesa R, Travieso-Rodriguez JA, Llumà-Fuentes J, Gomez-Gras G, Puig D. Fatigue lifespan study of PLA parts obtained by additive manufacturing. Procedia Manuf. 2017; 13: 872-9. https://linkinghub.elsevier.com/retrieve/pii/S2351978917307837. https://doi.org/10.1016/j.promfg.2017.09.146
  60. Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnol Adv. 2007; 25: 148-75. https://linkinghub.elsevier.com/retrieve/pii/S0734975006001443. https://doi.org/10.1016/j.biotechadv.2006.11.007
  61. Hayashi T. Biodegradable polymers for biomedical uses. Prog Polym Sci. Elsevier; 1994; 19: 663-702. https://doi.org/10.1016/0079-6700(94)90030-2
  62. Holland SJ, Tighe BJ. Biodegradable polymers. Adv Pharm Sci. Academic Press New York; 1992; 6: 101-64.
  63. Kronenthal RL. Biodegradable polymers in medicine and surgery. Polym Med Surg. Springer; 1975. p. 119-37. https://doi.org/10.1007/978-1-4684-7744-3_9
  64. Lee K, Kaplan D. Tissue engineering I: scaffold systems for tissue engineering. Springer; 2006. https://doi.org/10.1007/11579328
  65. Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. Elsevier; 2006. p. 301-47. https://doi.org/10.1016/S1387-2656(06)12009-8
  66. Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromechanics Microengineering. IOP Publishing; 2012; 22: 085014. https://doi.org/10.1088/0960-1317/22/8/085014
  67. Mckeen L. Renewable resource and biodegradable polymers. Eff. Steriliz. Plast. Elastomers. Elsevier, Amsterdam, The Netherlands. DOI; 2012. https://doi.org/10.1016/B978-1-4557-2551-9.00014-1
  68. Pakkanen J, Manfredi D, Minetola P, Iuliano L. About the use of recycled or biodegradable filaments for sustainability of 3D printing. Int Conf Sustain Des Manuf. Springer; 2017. p. 776-85. https://doi.org/10.1007/978-3-319-57078-5_73
  69. Singh AK, Saltonstall B, Patil B, Hoffmann N, Doddamani M, Gupta N. Additive Manufacturing of Syntactic Foams: Part 2: Specimen Printing and Mechanical Property Characterization. JOM. 2018; 70: 310-4. https://doi.org/10.1007/s11837-017-2731-x
  70. Javadzadeh Y, Hamedeyaz S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease. In: Roesler B, editor. Trends Helicobacter Pylori Infect. InTech; 2014. http://www.intechopen.com/books/trends-in-helicobacter-pylori-infection/floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d. https://doi.org/10.5772/57353
  71. Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew Chem Int Ed. 2005; 44: 3358-93. https://doi.org/10.1002/anie.200460587
  72. Dai L, Cheng T, Duan C, Zhao W, Zhang W, Zou X, et al. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr Polym. 2019; 203: 71-86. https://linkinghub.elsevier.com/retrieve/pii/S0144861718310919. https://doi.org/10.1016/j.carbpol.2018.09.027
  73. Mandala R, Bannoth AP, Akella S, Rangari VK, Kodali D. A short review on fused deposition modeling 3D printing of bio‐based polymer nanocomposites. J Appl Polym Sci. 2022; 139: 51904. https://doi.org/10.1002/app.51904
  74. Zhuang Y, Song W, Ning G, Sun X, Sun Z, Xu G, et al. 3D-printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Mater Des. 2017; 126: 135-40. https://doi.org/10.1016/j.matdes.2017.04.047
  75. Ronca D, Langella F, Chierchia M, D'Amora U, Russo T, Domingos M, et al. Bone Tissue Engineering: 3D PCL-based Nanocomposite Scaffolds with Tailored Properties. Procedia CIRP. 2016; 49: 51-4. https://linkinghub.elsevier.com/retrieve/pii/S2212827115007878. https://doi.org/10.1016/j.procir.2015.07.028
  76. Zhang B, Seong B, Nguyen V, Byun D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromechanics Microengineering. 2016; 26: 025015. https://doi.org/10.1088/0960-1317/26/2/025015
  77. Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A. Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear-resistant hierarchical nanocomposites. Polym Compos. 2018; 39: 3877-88. https://doi.org/10.1002/pc.24422
  78. Foresti R, Ghezzi B, Vettori M, Bergonzi L, Attolino S, Rossi S, et al. 3D Printed Masks for Powders and Viruses Safety Protection Using Food Grade Polymers: Empirical Tests. Polymers. 2021; 13: 617. https://doi.org/10.3390/polym13040617
  79. Tian X, Liu T, Yang C, Wang Q, Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part Appl Sci Manuf. 2016; 88: 198-205. https://linkinghub.elsevier.com/retrieve/pii/S1359835X16301695. https://doi.org/10.1016/j.compositesa.2016.05.032
  80. Ferreira RTL, Amatte IC, Dutra TA, Bürger D. Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos Part B Eng. 2017; 124: 88-100. https://linkinghub.elsevier.com/retrieve/pii/S135983681633195X. https://doi.org/10.1016/j.compositesb.2017.05.01381
  81. Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, et al. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. J Pharm Sci. 2016; 105: 2665-76. https://linkinghub.elsevier.com/retrieve/pii/S0022354915002099. https://doi.org/10.1016/j.xphs.2015.12.012
  82. Rymansaib Z, Iravani P, Emslie E, Medvidović-Kosanović M, Sak-Bosnar M, Verdejo R, et al. All-Polystyrene 3D-Printed Electrochemical Device with Embedded Carbon Nanofiber-Graphite-Polystyrene Composite Conductor. Electroanalysis. 2016; 28: 1517-23. https://doi.org/10.1002/elan.201600017
  83. Gunaratne LMWK, Shanks RA. Miscibility, melting, and crystallization behavior of poly(hydroxybutyrate) and poly(D,L-lactic acid) blends. Polym Eng Sci. 2008; 48: 1683-92. https://doi.org/10.1002/pen.21051
  84. Arrieta MP, Samper MD, López J, Jiménez A. Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. J Polym Environ. 2014; 22: 460-70. https://doi.org/10.1007/s10924-014-0654-y
  85. Qiu TY, Song M, Zhao LG. Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mech Adv Mater Mod Process. 2016; 2: 7. https://doi.org/10.1186/s40759-016-0014-9
  86. Kaygusuz B, Özerinç S. Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. J Appl Polym Sci. 2019; 136: 48154. https://doi.org/10.1002/app.48154
  87. Menčík P, Přikryl R, Stehnová I, Melčová V, Kontárová S, Figalla S, et al. Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials. 2018; 11: 1893. https://doi.org/10.3390/ma11101893
  88. Gonzalez Ausejo J, Rydz J, Musioł M, Sikorska W, Sobota M, Włodarczyk J, et al. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym Degrad Stab. 2018; 152: 191-207. https://doi.org/10.1016/j.polymdegradstab.2018.04.024
  89. Chen G, Chen N, Wang Q. Fabrication and properties of poly(vinyl alcohol)/β-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering. Compos Sci Technol. 2019; 172: 17-28. https://doi.org/10.1016/j.compscitech.2019.01.004
  90. Esposito Corcione C, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. 2019; 45: 2803-10. https://doi.org/10.1016/j.ceramint.2018.07.297
  91. Wu C-S, Liao H-T, Cai Y-X. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polym Degrad Stab. 2017; 140: 55-63. https://doi.org/10.1016/j.polymdegradstab.2017.04.016
  92. Tian J, Zhang R, Wu Y, Xue P. Additive manufacturing of wood flour/polyhydroxyalkanoates (PHA) fully bio-based composites based on micro-screw extrusion system. Mater Des. 2021; 199: 109418. https://doi.org/10.1016/j.matdes.2020.109418
  93. Jabeen N, Majid I, Nayik GA. Bioplastics and food packaging: A review. Yildiz F, editor. Cogent Food Agric. 2015; 1: 1117749. https://doi.org/10.1080/23311932.2015.1117749
  94. Rahman R. Bioplastics for Food Packaging: A Review. Int J Curr Microbiol Appl Sci. 2019; 8: 2311-21. https://doi.org/10.20546/ijcmas.2019.803.274
  95. Muthusamy MS, Pramasivam S. Bioplastics-an eco-friendly alternative to petrochemical plastics. Curr World Environ. Enviro Research Publishers; 2019; 14: 49. https://doi.org/10.12944/CWE.14.1.07
  96. Sun B, Ma Q, Wang X, Liu J, Rejab MRM. Additive manufacturing in medical applications: A brief review. IOP Conf Ser Mater Sci Eng. 2021; 1078: 012007. https://doi.org/10.1088/1757-899X/1078/1/012007
  97. Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym. 2019; 207: 297-316. https://doi.org/10.1016/j.carbpol.2018.11.077
  98. T. S, P. S, M.S. A. A review on advancements in applications of fused deposition modelling process. Rapid Prototyp J. 2020; 26: 669-87. https://doi.org/10.1108/RPJ-08-2018-0199
  99. Faidallah RF, Szakál Z, Oldal I. Introduction to 3d printing: techniques, materials and agricultural applications. Hung Agric Eng. 2021; 47-58. https://doi.org/10.17676/HAE.2021.40.47
  100. Najmon JC, Raeisi S, Tovar A. Review of additive manufacturing technologies and applications in the aerospace industry. Addit Manuf Aerosp Ind. Elsevier; 2019; 7-31. https://doi.org/10.1016/B978-0-12-814062-8.00002-9
  101. Goh GD, Agarwala S, Goh GL, Dikshit V, Sing SL, Yeong WY. Additive manufacturing in unmanned aerial vehicles (UAVs): Challenges and potential. Aerosp Sci Technol. 2017; 63: 140-51. https://doi.org/10.1016/j.ast.2016.12.019