Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 10 (2023)

Prediction on MRAM Etching Endpoint by Response Surface Method

DOI
https://doi.org/10.31875/2409-9848.2023.10.06
Submitted
May 24, 2023
Published
2023-05-24

Abstract

Abstract: STT-MRAM (Spin-Transfer-Torque Magnetic Random Access Memory) with high-density is considered as one of the most promising storage candidates with potential applications. In the process of MRAM manufacturing, etching step should be stopped precisely at the specific material layer. The dielectric layer should be protected with certain coverage. Then the subsequent etching steps continue. It is crucial to detect the endpoint of the etching during the fabrication process.

In the paper, the factors influencing the etching rate are analysed, including gas pressure, gas temperature, ion sheath thickness, self-biased DC voltage and RF power frequency, respectively. An approach based on Response Surface Method (RSM) is adopted to predict the endpoint of the etching process. The optimized interplay relationship is set up among the gas pressure, the gas temperature, the ion sheath thickness, the self-biased DC voltage and the RF power frequency, et al.. It shows that RSM approach is an effective statistical method for the optimization on the etching stop technology, especially when the complex etching condition options are involved. The simulation results demonstrate the MRAM sidewall smoothness can be improved under the optimized etching environment configuration.

References

  1. Barnes, M. S., Forster, J. C., & Keller, J. H. (1991). Ion kinetics in low-pressure, electropositive, RF glow discharge sheaths. IEEE Transactions on plasma science, 19(2), 240-244. https://doi.org/10.1109/27.106819
  2. Cardinaud, C., Peignon, M. C., & Tessier, P.-Y. (2000). Plasma etching: principles, mechanisms, application to micro-and nano-technologies. Applied Surface Science, 164(1-4), 72-83. https://doi.org/10.1016/S0169-4332(00)00328-7
  3. Donnelly, V. M., & Kornblit, A. (2013). Plasma etching: Yesterday, today, and tomorrow. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 31(5), 050825. https://doi.org/10.1116/1.4819316
  4. Draper, N. R. (1992). Introduction to Box and Wilson (1951) on the experimental attainment of optimum conditions (Breakthroughs in Statistics (pp. 267-269). Springer. https://doi.org/10.1007/978-1-4612-4380-9_22
  5. Endoh, T., Kang, S., Kudo, T., & Yagi, Y. (2018). Etch Process Technology for High Density STT-MRAM. (Ed.),^(Eds.). 2018 IEEE International Magnetics Conference (INTERMAG). https://doi.org/10.1109/INTMAG.2018.8508858
  6. Garay, A. A., Choi, J. H., Hwang, S. M., & Chung, C. W. (2015). Inductively coupled plasma reactive ion etching of magnetic tunnel junction stacks in a CH3COOH/Ar gas. ECS Solid State Letters, 4(10), P77. https://doi.org/10.1149/2.0071510ssl
  7. G.S. Kar; W. Kim; T. Tahmasebi; J. Swerts; S. Mertens; N. Heylen; T. Min(2014). Co/Ni based p-MTJ stack for sub-20nm high density stand alone and high performance embedded memory application," 2014 IEEE International Electron Devices Meeting, 2014, pp. 19.1.1-19.1.4. Gunst, R. F. (1996). Response surface methodology: process and product optimization using designed experiments. Taylor & Francis.
  8. https://doi.org/10.2307/1270613
  9. Jennings, S. (1988). The mean free path in air. Journal of Aerosol Science, 19(2), 159-166. https://doi.org/10.1016/0021-8502(88)90219-4
  10. Kim, S.-H., & Na, S.-W. (1997). Response surface method using vector projected sampling points. Structural safety, 19(1), 3-19. https://doi.org/10.1016/S0167-4730(96)00037-9
  11. Lee, T. Y., Lee, I. H., & Chung, C. W. (2013). Inductively coupled plasma reactive ion etching of magnetic tunnel junction stacks using H2O/CH4 mixture. Thin Solid Films, 547, 146-150. https://doi.org/10.1016/j.tsf.2013.04.022
  12. Ma, T., Moroz, V., Borges, R., & Smith, L. (2010). TCAD: Present state and future challenges. (Ed.),^(Eds.). 2010 International Electron Devices Meeting. https://doi.org/10.1109/IEDM.2010.5703367
  13. Neureuther, A., Liu, C., & Ting, C. (1979). Modeling ion milling. Journal of Vacuum Science and Technology, 16(6), 1767-1771. https://doi.org/10.1116/1.570290
  14. Nojiri, K. (2015). Dry etching technology for semiconductors. Springer. https://doi.org/10.1007/978-3-319-10295-5
  15. Reynolds, J. L., Neureuther, A. R., & Oldham, W. G. (1979). Simulation of dry etched line edge profiles. Journal of Vacuum Science and Technology, 16(6), 1772-1775. https://doi.org/10.1116/1.570291
  16. Takagi, S., Iyanagi, K., Onoue, S., Shinmura, T., & Fujino, M. (2002). Topography simulation of reactive ion etching combined with plasma simulation, sheath model, and surface reaction model. Japanese journal of applied physics, 41(6R), 3947. https://doi.org/10.1143/JJAP.41.3947
  17. Xue, L., Nistor, L., Ahn, J., Germain, J., Ching, C., Balseanu, M., Trinh, C., Chen, H., Hassan, S., & Pakala, M. (2014). A self-aligned two-step reactive ion etching process for nanopatterning magnetic tunnel junctions on 300 mm wafers. IEEE Transactions on Magnetics, 50(11), 1-3. https://doi.org/10.1109/TMAG.2014.2322351
  18. Yang, K.C., Park, S.W., Lee, H.S., Yeom, G.Y.(2017). Nanoscale Spin-Transfer Torque MRAM Etching Using Various Gases. ECS Transactions, 77(29-36). https://doi.org/10.1149/07703.0029ecst
  19. Yu-Xiang, Z., Hui-Ge, Q. U., Run-Ya, Y., Bo, Y. U., Huan, S., & Hua-Kai, S. (2010). Application of RSM to Microwave-assisted Extraction Optimization of Flavanoids from Blueberry Leaves. Food Science.
  20. Zhang, X., Zhang, G., Shen, L., Yu, P., & Jiang, Y. (2020). Life-time degradation of STT-MRAM by self-heating effect with TDDB model. Solid-State Electronics, 173, 107878. https://doi.org/10.1016/j.sse.2020.107878
  21. Zhang, Y., Kushner, M. J., Sriraman, S., Marakhtanov, A., Holland, J., & Paterson, A. (2015). Control of ion energy and angular distributions in dual-frequency capacitively coupled plasmas through power ratios and phase: Consequences on etch profiles. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(3), 031302. https://doi.org/10.1116/1.4915248