Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 2 No. 1 (2015)

Carrier Transport Mechanism of Copper Phthalocyanine Based Photodiode for Solar Cell Applications

DOI
https://doi.org/10.15377/2410-2199.2015.02.01.4
Submitted
September 12, 2015
Published
2015-09-12

Abstract

Copper phthalocyanine (CuPc)/n-silicon junction was fabricated using thermal evaporator method. X-ray analysis of the CuPc film confirms the b-phase with preferred orientation along (100) direction. The crystallite size of the CuPc film was estimated using XRD data and observed to be about 12.6 nm. The current-voltage characteristics of Au/CuPc/n-Si/Au device was studied in dark and under illumination. The device showed diode characteristics. The diode parameters such as ideality factor, barrier height and series resistance were determined using different techniques such as conventional forward bias I-V characteristics, Cheung method and Norde’s function. A good agreement between the diode parameters calculated form these methods was observed. The analysis of the diode characteristics confirmed that the transport mechanism of the Au/CuPc/n-Si/Au diode at the higher electric fields was governed by the space-charge-limited currents. The photoconducting behavior of the diode suggests that it can be used as a photosensor in optoelectronic applications.

References

  1. Kudo K, Iizuka M, Kuniyoshi S, Tanaka K. Device characteristics of lateral and vertical type organic field effect transistors. Thin Solid Films 2001 8/1/; 393(1-2): 362-7.
  2. Li F, Zheng Q, Yang G, Dai N, Lu P. Spectrum of copper phthalocyanine: Experiments and semi-empirical quantum chemical calculations. Physica B: Condensed Matter 2008 5/1/; 403(10-11): 1704-7.
  3. Pizzini S, Timo GL, Beghi M, Butta N, Mari CM, Faltenmaier J. Influence of the structure and morphology on the sensitivity to nitrogen oxides of phthalocyanine thin-film resistivity sensors. Sensors and Actuators 1989 5/17/; 17(3- 4): 481-91.
  4. Rostalski J, Meissner D. Monochromatic versus solar efficiencies of organic solar cells. Sol Energy Mater Sol Cells 2000 2/15/; 61(1): 87-95.
  5. Joseph CM, Menon CS. Device preparation and characteristics of CuPc transistor. Mater Lett 2002 1//; 52(3): 220-2.
  6. Prabakaran R, Fortunato E, Martins R, Ferreira I. Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. J Non-Cryst Solids 2008 5/1/; 354(19-25): 2892-6.
  7. Aristov VY, Molodtsova OV, Maslyuk V, Vyalikh DV, Zhilin VM, Ossipyan YA, et al. Electronic structure of pristine CuPc: Experiment and calculations. Appl Surf Sci 2007 10/31/; 254(1): 20-5.
  8. Gorgoi M, Zahn DRT. Charge-transfer at silver/phthalocyanines interfaces. Appl Surf Sci 2006 5/30/; 252(15): 5453-6.
  9. Thurzo I, Pham G, Zahn DRT. On the mechanism of the hysteresis and offset of current–voltage characteristics of diodes based on organic materials. Chem Phys 2003 2/1/; 287(1-2): 43-54.
  10. Reis FT, Mencaraglia D, Ould Saad S, Séguy I, Oukachmih M, Jolinat P, et al. Electrical characterization of ITO/CuPc/Al diodes using temperature dependent capacitance spectroscopy and I–V measurements. J Non-Cryst Solids 2004 6/15/; 338-340(0): 599-602.
  11. Berger O, Fischer WJ, Adolphi B, Tierbach S, Melev V, Schreiber J. Studies on phase transformations of Cuphthalocyanine thin films. J Mater Sci: Mater Electron 2000 2000/06/01; 11(4): 331-46. English.
  12. Rajesh KR, Varghese S, Menon CS. Determination of electrical and solar cell parameters of FTO/CuPc/Al Schottky devices. J Phys Chem Solids 2007 4//; 68(4): 556-60.
  13. Chiu K-C, Juey L-T, Su C-F, Tang S-J, Jong M-N, Wang S-S, et al. Effects of source and substrate temperatures on the properties of ITO/CuPc/C60 heterostructure prepared by physical vapor deposition. J Cryst Growth 2008 4//; 310(7-9): 1734-8.
  14. Marotti RE, Guerra DN, Bello C, Machado G, Dalchiele EA. Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energy Mater Sol Cells 2004 5/1/; 82(1-2): 85-103.
  15. Pirriera MD, Puigdollers J, Voz C, Stella M, Bertomeu J, Alcubilla R. Optoelectronic properties of CuPc thin films deposited at different substrate temperatures. J Phys D: Appl Phys 2009; 42(14): 145102. http://dx.doi.org/10.1088/0022-3727/42/14/145102
  16. Sueyoshi T, Kakuta H, Ono M, Sakamoto K, Kera S, Ueno N. Band gap states of copper phthalocyanine thin films induced by nitrogen exposure. Appl Phys Lett 2010; 96(9): 093303. http://dx.doi.org/10.1063/1.3332577
  17. Rhoderick EH, Williams RH. Metal-Semiconductor Contacts: Clarendon Press, Oxford 1988; 1988.
  18. Sze S. Physics of semiconductor devices 1979: New York, Wiley.
  19. Gupta RK, Yakuphanoglu F. Analysis of device parameters of Al/In2O3/p-Si Schottky diode. Microelectron Eng 2013 5//; 105(0): 13-7.
  20. Reddy VR, Reddy MSP, Lakshmi BP, Kumar AA. Electrical characterization of Au/n-GaN metal–semiconductor and Au/SiO2/n-GaN metal–insulator–semiconductor structures. J Alloys Compd 2011; 509(31): 8001-7. http://dx.doi.org/10.1016/j.jallcom.2011.05.055
  21. Huang C-Y, Lin S-Y, Cheng S-S, Chou S-T, Yang C-Y, Ou TM, et al. Transport mechanisms and the effects of organic layer thickness on the performance of organic Schottky diodes. Journal of Vacuum Science & Technology B 2007; 25(1): 43-6. http://dx.doi.org/10.1116/1.2404682
  22. El-Nahass MM, Zeyada HM, Aziz MS, El-Ghamaz NA. Carrier transport mechanisms and photovoltaic properties of Au/p-ZnPc/p-Si solar cell. Solid-State Electron 2005 8//; 49(8): 1314-9.
  23. Cheung SK, Cheung NW. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl Phys Lett 1986; 49(2): 85-7. http://dx.doi.org/10.1063/1.97359
  24. Norde H. A modified forward I-V plot for Schottky diodes with high series resistance. J Appl Phys 1979; 50(7): 5052-3. http://dx.doi.org/10.1063/1.325607