This paper presents the effects of sublimation temperature of C60 fullerene on the photovoltaic properties of amorphous carbon (a-C) films synthesized by remote plasma cracking. Here, we show that the deposition rate increases rapidly,Raman peak intensity corresponding to disordered fullerene becomes strong and the optical band gap increases with increasing the sublimation temperature. The photovoltaic devices with structure of Al/C60/a-C/ITO glass are fabricated with different sublimation temperatures and therelationship between the photovoltaic properties and the material properties of a-C films are discussed. It is shown that the improvementof power conversion efficiency is explained by low component of disorderedC60in amorphous carbon at lower sublimation temperature.
References
Lamnatou C, Chemisana D, Photovoltaic/thermal (PVT) systems: A review with emphasis on environmental issues, Renewable Energy 2017; 105: 270-287. https://doi.org/10.1016/j.renene.2016.12.009
Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanemitsu M, Uzu H, Yamamoto K, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy 2017; 2: 17032. https://doi.org/10.1038/nenergy.2017.32
Mathew S, Yella A, Gao P, Baker RH, Curchod BFE, Astani NA, Tanernelli I, Rothlisberger U, Nazelrddin K, Gratzel M, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chem. 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russel TP, Cao Y, Single-junction polymer solar cells with high efficiency and photovoltage, Nature Photonics 2015; 9: 174- 179. https://doi.org/10.1038/nphoton.2015.6
Park NG, Gratzel M, Miyasaka T, Zhu K, Emery K, Towards stable and commercially available perovskite solar cells, Nature Energy 2016; 1: 16152. https://doi.org/10.1038/nenergy.2016.152
Yi Y, Coropceanu V, Bredas JL, Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry, J. Am. Chem. Soc. 2009; 131(43): 15777-15783. https://doi.org/10.1021/ja905975w
Nasibulin AG, Funde AM, Anoshkin IV, Levitsky IA, Allcarbon nanotube diode and solar cell statistically formed from macroscopic network, Nano Research 2015; 8(9): 2800- 2809. https://doi.org/10.1007/s12274-015-0785-z
Yin Z, Zhu J , He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H, Graphene-Based Materials for Solar Cell Applications, Advanced Energy Materials 2014; 4(1): 1300574. https://doi.org/10.1002/aenm.201300574
Soga T, Kokubu T, Hayashi Y, Jimbo T, Umeno M, Effect of rf power on the photovoltaic properties of boron-doped amorphous carbon/n-type silicon junction fabricated by plasma enhanced chemical vapor deposition, Thin Solid Films 2005; 482(1-2): 86-89. https://doi.org/10.1016/j.tsf.2004.11.123
Sharon M, Mukhopadhyay I,Mukhopadhyay K, A Photoelectrochemical Solar Cells from camphoric p-Carbon semiconductor, Solar Energy Materials and Solar Cells 1997; 45(1) :35-41. https://doi.org/10.1016/S0927-0248(96)00029-3
Krishna KM, Soga T, Mukhopadhyay K, Sharon M, Umeno M, Photovoltaic solar cell from camphoric carbon. A natural Carbon, Solar Energy Materials and Solar cells, 48;(1-4):25- 33. https://doi.org/10.1016/S0927-0248(97)00064-0
Kojima N, Yamaguchi M, Ishikawa N, Analysis of Photovoltaic Properties of C60-Si Heterojunction Solar Cells , Jpn. J. Appl. Phys. 2000; 39(3A): 1176-1179. https://doi.org/10.1143/JJAP.39.1176
Ong PL, Euler WB, Levitsky IA, Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions, Nanotechnology 2010; 21: 105203. https://doi.org/10.1088/0957-4484/21/10/105203
Behura SK, Nayak S, Mukhopadhyay I, Jani O, Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell, Carbon 2014; 67: 766-774. https://doi.org/10.1016/j.carbon.2013.10.069
Krishna KM, Soga T, Jimbo T, Umeno M, Phosphorus doped (n-type) carbon/boron doped (p-type) silicon photovoltaic solar cell from a natural source, Carbon 1999; 37: 531-533. https://doi.org/10.1016/S0008-6223(99)00019-6
Rusop M, Mominuzzaman SM, Soga T, Jimbo T, Umeno M, Photovoltaic properties of n-C:P/p-Si cells deposited by XeCleximer laser using graphite target, Sol. Energy Mater. Sol. Cells 2006; 90(18-19): 3205-3213. https://doi.org/10.1016/j.solmat.2006.06.018
Yu HA, Kaneko Y, Otani S, Sasaki Y, Yoshimura S, A carbonaceous thin film made by CVD and its application for a carbon/n-type silicon (C/n-Si) photovoltaic cell, Carbon 1998; 36(1-2): 137-143. https://doi.org/10.1016/S0008-6223(97)00170-X
Hayashi Y, Hagimoto K, Ebisu H, Krishna KM, Soga T, Umeno M, Jimbo T, Effect of Radio Frequency Power on the Properties of Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma Enhanced Chemical Vapor Deposition, Jpn. J. Appl. Phys. 2000; 39(7A): 4088-4093. https://doi.org/10.1143/JJAP.39.4088
Zhou ZB, Cui RQ, Pang QJ, Hadi GM, Ding ZM, Li WY, Schottky solar cells with amorphous carbon nitride thin films prepared by ion beam sputtering technique, Sol. Energy Mater. Sol. Cells 2002; 70(4): 487-493. https://doi.org/10.1016/S0927-0248(01)00086-1
Krishna KM, Nukaya Y, Soga T, Jimbo T, Umeno M, Photovoltaic and spectral photoresponse characteristics of nC/p-C solar cell on a p-silicon substrate, Appl. Phys. Lett. 2000; 77(10): 1472-1474. https://doi.org/10.1063/1.1290687
Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S, Nanocarbon-Based Photovoltaics, ACS NANO 2012; 6(10): 8896-8903. https://doi.org/10.1021/nn302893p
Risplendi F, Cicero G, Grossman JC, Nanostructured BulkHeterojunction Solar Cells Based on Amorphous Carbon, ACS Energy Lett. 2017; 2(4): 882-888. https://doi.org/10.1021/acsenergylett.7b00166
Drozdov AN, Vus AS, Pukha VE, Pugachev AT, Specific features of the evaporation of C60 films, Physics of Solid State 2008; 2(1): 195-197. https://doi.org/10.1134/S1063783408010356
Ferrari AC, Robertson J, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. 2000; B 61(20): 14095-14107. https://doi.org/10.1103/PhysRevB.61.14095