Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 4 (2017)

Preparation and Optimization of NbCrN/NbCrON/SiO2 Solar Selective Absorbing Coating

DOI
https://doi.org/10.15377/2410-2199.2017.04.4
Submitted
September 12, 2017
Published
2017-09-12

Abstract

A novel Cu/NbCrN/NbCrON/SiO2 solar selective absorbing coating was successfully prepared by magnetron sputtering. In this coating, Cu, NbCrN, NbCrON and SiO2 act as the infrared reflector metal layer (and as substrate too), high metal volume fraction layer, low metal volume fraction layer and anti-reflection layer, respectively. The effects of the reactive gas flow rates of the absorption layers and the thickness of each layer were investigated and the optimal deposition parameters for the coatings were obtained. Finally the main result is that the best spectral properties with the absorptance of 0.93 and the emittance of 0.07 (25oC) are achieved. The experimental results indicate its potential applications in solar collectors.

References

  1. Selvakumar N nad Barshilia HC. Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. J Solar Energy Materials and Solar Cells 2012; 98(5):1-23. https://dx.doi.org/10.1016/j.solmat.2011.10.028
  2. Kennedy CE. Review of mid-to high-temperature solar selective absorber materials. R. No. NREL/TP-520-31267. Golden: National Renewable Energy Laboratory of US, 2002.
  3. Xue YF, Wang C, Wang WW, Liu Y, Wu YX, Ning YP, et al. Spectral properties and thermal stability of solar selective absorbing AlNi–Al2O3 cermet coating. J Solar Energy 2013; 96:113-118. https://dx.doi.org/10.1016/j.solener.2013.07.012
  4. Wang J, Wei BC, Wei QR and Li DJ. Optical property and thermal stability of Mo/ Mo–SiO2/SiO2 solar-selective coating prepared by magnetron sputtering. J Physica Status Solidi (A) 2011; 208 (3): 664-667. https://dx.doi.org/10.1002/pssa.201026301
  5. Zhang QC, Yin Y and Mills DR. High efficiency Mo □ Al2O3, cermet selective surfaces for high-temperature application[J
  6. Barshilia HC, Selvakumar N, Rajam KS, SridharaRao DV, Muraleedharan K, et al. TiAlN⁄TiAlON⁄Si3N4 tandem absorber for high temperature solar selective applications. J Applied Physics Letters 2006; 89(19): 191909. http://dx.doi.org/10.1063/1.2387897
  7. Zhang QC and Mills DR. Very low‐emittance solar selective surfaces using new film structures. J Journal of Applied Physics 1992; 72(7):3 013-3021. http://dx.doi.org/10.1063/1.351510
  8. Liu Y, Wang C and Xue Y. The spectral properties and thermal stability of NbTiON solar selective absorbing coating. J Solar Energy Materials and Solar Cells 2012; 96(1): 131-136. https://dx.doi.org/10.1016/j.solmat.2011.09.034
  9. Wu YX, Wang C, Sun Y, Xue YF, Ning YP, Wang WW, et al. Optical simulation and experimental optimization of Al/NbMoN/NbMoON/SiO2 solar selective absorbing coatings. J Solar Energy Materials and Solar Cells 2015; 134: 373-380. http://dx.doi.org/10.1016/j.solmat.2014.12.005
  10. Ning YP, Wang WW, Wang L, Sun Y, Song P, Man HL, et al. Optical simulation and preparation of novel Mo/ZrSiN/ZrSiON/SiO2 solar selective absorbing coating. J Solar Energy Materials and Solar Cells 2017; 167: 178-183. http://dx.doi.org/10.1016/j.solmat.2017.04.017
  11. Rebouta L, Pitães A, Andritschky M, Capela P, Cerqueira MF, Matilainen A, et al. Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications. J Surface and Coatings Technology 2012; 211(42): 41-44. https://dx.doi.org/10.1016/j.surfcoat.2011.09.003
  12. Wu YX, Wang C, Sun Y, Ning YP, Liu YF, Xue YF, et al. Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2 solar selective absorbing coating. J Solar Energy 2015; 119: 18-28. https://dx.doi.org/10.1016/j.solener.2015.06.021
  13. Du M, Liu XP, Hao L, Wang XJ, Mi J, Jiang LJ, et al. Microstructure and thermal stability of Al/Ti0.5Al0.5N/Ti0.25Al0.75N/AlN solar selective coating. J Solar Energy Materials and Solar Cells 2013; 111(4): 49-56. https://dx.doi.org/10.1016/j.solmat.2012.12.010
  14. Barshilia HC, Selvakumar N, Rajam KS, SridharaRao DV and Muraleedharan K. Deposition and characterization of TiAlN/TiAlON/Si3N4 tandem absorbers prepared using reactive direct current magnetron sputtering[J
  15. Barshilia HC, Selvakumar N, Rajam KS and Biswas A. Spectrally selective NbAlN/ NbAlON/Si3N4 tandem absorber for high-temperature solar applications. J Solar Energy Materials and Solar Cells 2008; 92(4): 495-504. https://dx.doi.org/10.1016/j.solmat.2007.11.004
  16. Selvakumar N, Manikandanath NT, Biswas A and Barshilia HC. Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications. J Solar Energy Materials and Solar Cells 2012; 102(4): 86-92. https://dx.doi.org/10.1016/j.solmat.2012.03.021
  17. Selvakumar N, Prajith K, Biswas A and Barshilia HC. Optical simulation and fabrication of HfMoN/HfON/Al2O3 spectrally selective coating. J Solar Energy Materials and Solar Cells 2015; 140: 328-334. https://dx.doi.org/10.1016/j.solmat.2015.04.031
  18. Selvakumar N, Santhoshkumar S, Basu S, Biswas A and Barshilia HC. Spectrally selective CrMoN/CrON tandem absorber for mid-temperature solar thermal applications. J Solar Energy Materials and Solar Cells 2013; 109(5): 97-103. https://dx.doi.org/10.1016/j.solmat.2012.10.003
  19. Du XK, Wang TM, Wang C, Chen BL and Zhou L. Microstructure and optical characterization of magnetron sputtered NbN thin films. J Chinese Journal of Aeronautics 2007; 20(2): 140-144. https://dx.doi.org/10.1016/S1000-9361(07)60021-1
  20. Wu L, Gao JH, Liu ZM, Liang LY, Xia F and Cao HT. Thermal aging characteristics of CrNxOy solar selective absorber coating for flat plate solar thermal collector applications. J Solar Energy Materials and Solar Cells 2013; 114(114): 186-191. https://dx.doi.org/10.1016/j.solmat.2013.03.005
  21. Barshilia HC, Selvakumar N, Rajam KS and Biswas A. Structure and optical properties of pulsed sputter deposited CrxOy⁄Cr⁄Cr2O3 solar selective coatings. J Journal of Applied Physics 2008; 103(2): 023507. http://dx.doi.org/10.1063/1.2831364
  22. Zou CW, Xie W and Shao LX. Functional multi-layer solar spectral selective absorbing coatings of AlCrSiN/AlCrSiON/AlCrO for high temperature applications. J Solar Energy Materials and Solar Cells 2016; 153: 9-17. https://dx.doi.org/10.1016/j.solmat.2016.04.007
  23. Liu HD, Wan Q, Xu YR, Luo C, Chen YM, Fu DJ, et al. Longterm thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air. J Solar Energy Materials and Solar Cells 2015; 134: 261-267. https://dx.doi.org/10.1016/j.solmat.2014.12.009
  24. Wang XL, Wu XF, Yuan L, Zhou CP, Wang YX, Huang KK, et al. Solar selective absorbers with foamed nanostructure prepared by hydrothermal method on stainless steel. J Solar Energy Materials and Solar Cells 2016; 146: 99-106. https://dx.doi.org/10.1016/j.solmat.2015.11.040
  25. Zhang QC and Mills DR. New cermet film structures with much improved selectivity for solar thermal applications. J Applied Physics Letters 1992; 60(5): 545-547. http://dx.doi.org/10.1063/1.106602
  26. Dan A, Jyothi J, Chattopadhyay K, Barshilia HC and Basu B. Spectrally selective absorber coating of WAlN/WAlON/Al2O3 for solar thermal applications. J Solar Energy Materials and Solar Cells 2016; 157: 716-726. https://dx.doi.org/10.1016/j.solmat.2016.07.018