Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Optoelectrical Properties of NiInZnO (NIZO) Thin Films

DOI
https://doi.org/10.31875/2410-2199.2019.06.10
Submitted
January 17, 2019
Published
2019-01-17

Abstract

This report presents the fabrication and characterization of x % Ni - InZnO (NIZO) Schottky diodes. The structural, optical and electrical properties of the fabricate Al/p-Si / x % Ni - InZnO /Au photodiodes were investigated. An average visible transmittance of about 75% - 85% has been obtained in the visible-light to near-infrared wavelength region. The optical bandgap was 3.17 ± 0.02 eV. Current-Voltage measurements were conducted to analyze the photodiode behavior under dark and light illumination. The reverse bias current increases together with increasing light illumination. The observed I-V results confirm the photoconductive and photovoltaic properties of the fabricated diode. There is an exponential relationship between the current and the voltage in the forward bias, confirming the rectification performance of the photodiode. The electrical properties of the fabricated photodiodes were evaluated using Cheung- Cheung and Norde’s methods. The transient photocurrent, capacitance-voltage-frequency and conductance-voltagefrequency plots indicate that the diode is very sensitive to light illumination. We also observe a strong correlation between capacitance and conductance on frequency, this was explained based on the presence of interface states. The obtained results suggest that the Ni-doped InZnO photodiodes can be useful in photovoltaic and optoelectronic applications.

References

  1. W.M. Kwok, A.B. Djurišić, Y.H. Leung, D. Li, K.H. Tam, D.L. Phillips, W.K. Chan, Applied Physics Letters, 89 (2006) 183112. https://doi.org/10.1063/1.2378560
  2. W. Zhong Lin, Journal of Physics: Condensed Matter, 16 (2004) R829. https://doi.org/10.1088/0953-8984/16/25/R01
  3. S. Mridha, D. Basak, Journal of Applied Physics, 101 (2007) 083102. https://doi.org/10.1063/1.2724808
  4. M. Ding, D. Zhao, B. Yao, B. Li, Z. Zhang, D. Shen, Applied Physics Letters, 98 (2011) 062102. https://doi.org/10.1063/1.3549304
  5. S.N. Das, J.-H. Choi, J.P. Kar, T.I. Lee, J.-M. Myoung, Materials Chemistry and Physics, 121 (2010) 472-476. https://doi.org/10.1016/j.matchemphys.2010.02.007
  6. A.R. Rao, V. Dutta, Nanotechnology, 19 (2008) 445712. https://doi.org/10.1088/0957-4484/19/44/445712
  7. G. Hu, W. Guo, R. Yu, X. Yang, R. Zhou, C. Pan, Z.L. Wang, Nano Energy, 23 (2016) 27-33. https://doi.org/10.1016/j.nanoen.2016.02.057
  8. R. Araneo, A. Rinaldi, A. Notargiacomo, M. Pea, S. Celozzi, Sensors and Actuators A: Physical, 244 (2016) 166-173. https://doi.org/10.1016/j.sna.2016.04.031
  9. B. Wu, Z. Lin, M. Sheng, S. Hou, J. Xu, Applied Surface Science, 360, Part B (2016) 652-657. https://doi.org/10.1016/j.apsusc.2015.11.037
  10. H.-J. Wang, L.-N. Wang, Y. Cao, Journal of Environmental Chemical Engineering, 3 (2015) 2263-2272. https://doi.org/10.1016/j.jece.2015.08.018
  11. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, Journal of Alloys and Compounds, 653 (2015) 327-333. https://doi.org/10.1016/j.jallcom.2015.08.220
  12. D. Greiner, N. Papathanasiou, A. Pflug, F. Ruske, R. Klenk, Thin Solid Films, 517 (2009) 2291-2294. https://doi.org/10.1016/j.tsf.2008.10.107
  13. L. Wong, S. Chiam, J. Huang, S. Wang, J. Pan, W. Chim, Applied Physics Letters, 98 (2011) 022106. https://doi.org/10.1063/1.3541885
  14. B. Kotlyarchuk, V. Savchuk, M. Oszwaldowski, Crystal Research and Technology, 40 (2005) 1118-1123. https://doi.org/10.1002/crat.200410502
  15. P.V. Radovanovic, D.R. Gamelin, Physical review letters, 91 (2003) 157202. https://doi.org/10.1103/PhysRevLett.91.157202
  16. H.-W. Fang, T.-E. Hsieh, J.-Y. Juang, Applied Surface Science, 345 (2015) 295-300. https://doi.org/10.1016/j.apsusc.2015.03.169
  17. H.-W. Fang, S.-J. Liu, T.-E. Hsieh, J.-Y. Juang, J.-H. Hsieh, Solar Energy, 85 (2011) 2589-2594. https://doi.org/10.1016/j.solener.2011.07.016
  18. H. Hosono, Journal of Non-Crystalline Solids, 352 (2006) 851-858. https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  19. Y.B. Xiao, S.M. Kong, E.H. Kim, C.W. Chung, Solar Energy Materials and Solar Cells, 95 (2011) 264-269. https://doi.org/10.1016/j.solmat.2010.02.016
  20. Y. Li, L. Lan, P. Xiao, Z. Lin, S. Sun, W. Song, E. Song, P. Gao, D. Wang, H. Ning, J. Peng, RSC Advances, 5 (2015) 51440-51445. https://doi.org/10.1039/C5RA09435F
  21. C.G. Choi, S.-J. Seo, B.-S. Bae, Electrochemical and SolidState Letters, 11 (2008) H7-H9. https://doi.org/10.1149/1.2800562
  22. R. Chauhan, A. Kumar, R.P. Chaudhary, Research on chemical Intermediates, 38 (2012) 1483-1493. https://doi.org/10.1007/s11164-011-0478-5
  23. J. Tauc, R. Grigorovici, A. Vancu, physica status solidi (b), 15 (1966) 627-637. https://doi.org/10.1002/pssb.19660150224
  24. P. Sharma, K. Sreenivas, K.V. Rao, Journal of Applied Physics, 93 (2003) 3963-3970. https://doi.org/10.1063/1.1558994
  25. H.-W. Fang, T.-E. Hsieh, J.-Y. Juang, Solar Energy Materials and Solar Cells, 121 (2014) 176-181. https://doi.org/10.1016/j.solmat.2013.11.003
  26. H. Aydin, A. Tataroğlu, A.A. Al-Ghamdi, F. Yakuphanoglu, F. El-Tantawy, W.A. Farooq, Journal of Alloys and Compounds, 625 (2015) 18-25. https://doi.org/10.1016/j.jallcom.2014.11.035
  27. C. Aksu Canbay, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, Z. Karagoz Genç, R.K. Gupta, F. Yakuphanoglu, Applied Physics A, 122 (2016) 1-11. https://doi.org/10.1007/s00339-016-0208-3
  28. S.M. Sze, D.J. Coleman, A. Loya, Solid-State Electron., 14 (1971) 1209-1218. https://doi.org/10.1016/0038-1101(71)90109-2
  29. R.T. Tung, Materials Science and Engineering: R: Reports, 35 (2001) 1-138. https://doi.org/10.1016/S0927-796X(01)00037-7
  30. E.H. Nicollian, A. Goetzberger, A.D. Lopez, Solid-State Electronics, 12 (1969) 937-944. https://doi.org/10.1016/0038-1101(69)90014-8
  31. S.K. Cheung, N.W. Cheung, Applied Physics Letters, 49 (1986) 85-87. https://doi.org/10.1063/1.97359
  32. H. Norde, Journal of Applied Physics, 50 (1979) 5052-5053. https://doi.org/10.1063/1.325607
  33. M. Zhu, J. Zhang, Z. Wang, L. Wan, X. Chen, Physica E: Low-dimensional Systems and Nanostructures, 43 (2010) 515-520. https://doi.org/10.1016/j.physe.2010.09.009
  34. R.K. Gupta, R.A. Singh, Materials Chemistry and Physics, 86 (2004) 279-283. https://doi.org/10.1016/j.matchemphys.2004.03.003
  35. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, Wiley, 2006. https://doi.org/10.1002/0470068329
  36. Y. An, A. Behnam, E. Pop, G. Bosman, A. Ural, Journal of Applied Physics, 118 (2015) 114307. https://doi.org/10.1063/1.4931142
  37. F. Yakuphanoglu, K. Mensah-Darkwa, A.A. Al-Ghamdi, R.K. Gupta, W.A. Farooq, Microelectronic Engineering, 160 (2016) 27-33. https://doi.org/10.1016/j.mee.2016.03.001
  38. H.C. Card, E.H. Rhoderick, Journal of Physics D: Applied Physics, 4 (1971) 1589. https://doi.org/10.1088/0022-3727/4/10/319
  39. M.S.P. Reddy, V.R. Reddy, C.-J. Choi, Journal of Alloys and Compounds, 503 (2010) 186-191. https://doi.org/10.1016/j.jallcom.2010.04.230
  40. R.K. Gupta, F. Yakuphanoglu, K. Ghosh, P.K. Kahol, Microelectronic Engineering, 88 (2011) 3067-3069. https://doi.org/10.1016/j.mee.2011.05.023
  41. N.M. Khusayfan, Journal of Alloys and Compounds, 666 (2016) 501-506. https://doi.org/10.1016/j.jallcom.2016.01.102
  42. J. áAnthony Byrne, B. Eggins, P.M. Dunlop, Analyst, 123 (1998) 2007-2012. https://doi.org/10.1039/a803885f
  43. X. Huang, X. Zhang, H. Jiang, Journal of power sources, 248 (2014) 434-438. https://doi.org/10.1016/j.jpowsour.2013.09.094
  44. A. Tataroğlu, H. Tuncer, A.A. Al-Ghamdi, A. Dere, B. Arif, S. Yol, N. Ozdemir, F. El-Tantawy, F. Yakuphanoglu, Synthetic Metals, 206 (2015) 15-23. https://doi.org/10.1016/j.synthmet.2015.04.007
  45. M. Nath, A. Roy, Physica B: Condensed Matter, 482 (2016) 43-50. https://doi.org/10.1016/j.physb.2015.12.007
  46. S. Demirezen, A. Kaya, Ö. Vural, Ş. Altındal, Materials Science in Semiconductor Processing, 33 (2015) 140-148. https://doi.org/10.1016/j.mssp.2015.01.050
  47. S. Karataş, F. Yakuphanoglu, F.M. Amanullah, Journal of Physics and Chemistry of Solids, 73 (2012) 46-51. https://doi.org/10.1016/j.jpcs.2011.09.020
  48. A. Tataroğlu, O. Dayan, N. Özdemir, Z. Serbetci, A.A. AlGhamdi, A. Dere, F. El-Tantawy, F. Yakuphanoglu, Dyes and Pigments, 132 (2016) 64-71. https://doi.org/10.1016/j.dyepig.2016.04.044
  49. E.H. Nicollian, J.R. Brews, MOS (metal oxide semiconductor) physics and technology, Wiley, 1982.
  50. O.A. Al-Hartomy, R.K. Gupta, A.A. Al-Ghamdi, F. Yakuphanoglu, Synthetic Metals, 195 (2014) 217-221. https://doi.org/10.1016/j.synthmet.2014.06.001
  51. R. Ertuğrul, A. Tataroğlu, Radiation Effects and Defects in Solids, 169 (2014) 791-799. https://doi.org/10.1080/10420150.2014.950265
  52. W.A. Hill, C.C. Coleman, Solid-State Electronics, 23 (1980) 987-993. https://doi.org/10.1016/0038-1101(80)90064-7