Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Graphene for Flexible Photovoltaic Devices

DOI
https://doi.org/10.31875/2410-2199.2019.06.2
Published
2019-01-17

Abstract

Flexible photovoltaic devices (FPD’s) are emerging as next-generation technology in photovoltaic research. FPD’s have attracted great research attention because of their broad potential applications especially in wearable devices, portable electronics, integrated textiles, unmanned aerial vehicles, transportation, and military etc. The existing technologies have evolved over the years, improving efficiency and performance of photovoltaic devices. However, these technologies mostly rely on rigid electrodes that are brittle, costly and chemically unstable. For FPD’s to become practical, new materials that offer inherent flexibility without compromising on mechanical and optical properties must be the focus. Researchers have made significant advances over the past decade towards developing various aspects of FPD’s to improve its optical transmittance, mechanical stability, chemical stability etc. Graphene is increasingly been recognized as an excellent material for flexible photovoltaic devices because of its unique optical, electrical and mechanical properties. The prospects of introducing an inexpensive and abundant carbon-based material such as graphene in making flexible, low-cost, transparent PV cells cannot be over emphasized. However, the method to synthesize graphene to achieve the best performance is still complicated. This paper presents a brief overview of recent developments made in flexible photovoltaic devices using graphene.

References

  1. VŞ. Ediger, An integrated review and analysis of multienergy transition from fossil fuels to renewables, Energy Procedia. 156 (2019) 2-6. https://doi.org/10.1016/j.egypro.2018.11.073
  2. T. Kåberger, Progress of renewable electricity replacing fossil fuels, Glob. Energy Interconnect. 1 (2018) 48-52. doi:https://doi.org/10.14171/j.2096-5117.gei.2018.01.006.
  3. F. Martins, C. Felgueiras, M. Smitková, Fossil fuel energy consumption in European countries, Energy Procedia. 153 (2018) 107-111. https://doi.org/10.1016/j.egypro.2018.10.050
  4. M. Ram, M. Child, A. Aghahosseini, D. Bogdanov, A. Lohrmann, C. Breyer, A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030, J. Clean. Prod. 199 (2018) 687-704. https://doi.org/10.1016/j.jclepro.2018.07.159
  5. B. Kramer, Advances in Solid State Physics, Springer, Berlin, Heidelberg, 2004. https://doi.org/10.1007/b95888
  6. A. Mohammad Bagher, Types of Solar Cells and Application, Am. J. Opt. Photonics. 3 (2016) 94. https://doi.org/10.11648/j.ajop.20150305.17
  7. A. Cristobal, Ana, Martí Vega, Antonio, Luque López, Next Generation of Photovoltaics, 2012. https://doi.org/10.1007/978-3-642-23369-2
  8. K. Ranabhat, L. Patrikeev, AA. evna Revina, K. Andrianov, V. Lapshinsky, E. Sofronova, An introduction to solar cell technology, J. Appl. Eng. Sci. 14 (2016) 481-491. https://doi.org/10.5937/jaes14-10879
  9. AW. Gavin J. Conibeer, Solar Cell Materials: Developing Technologies, 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2014. https://doi.org/10.1002/ente.201405007
  10. M. Bojic, J. Radulovic, V. Rankovic, D. Nikolic, L. Bojic, J. Skerlic, Flexible Thin-Film Solar photovoltaics: research and application, Ann. Fac. Eng. Hunedoara - Int. J. Eng. 14 (2016) 37-40. http://library.pittstate.edu:2048/login?url=https://search.ebsco host.com/login.aspx?direct=true&AuthType=ip&db=aph&AN= 113730823&site=ehost-live.
  11. G. Li, L. Sheng, T. Li, J. Hu, P. Li, K. Wang, Engineering flexible dye-sensitized solar cells for portable electronics, Sol. Energy. 177 (2019) 80-98. https://doi.org/10.1016/j.solener.2018.11.017
  12. X. Fu, L. Xu, J. Li, X. Sun, H. Peng, Flexible solar cells based on carbon nanomaterials, Carbon N. Y. 139 (2018) 1063- 1073. https://doi.org/10.1016/j.carbon.2018.08.017
  13. M. Kaltenbrunner, MS. White, ED. Głowacki, T. Sekitani, T. Someya, NS. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun. 3 (2012) 770. https://doi.org/10.1038/ncomms1772
  14. VK. Kapur, A. Bansal, P. Le, OI. Asensio, Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks, Thin Solid Films. 431-432 (2003) 53-57. https://doi.org/10.1016/S0040-6090(03)00253-0
  15. S. Li, Y. Luo, W. Lv, W. Yu, S. Wu, P. Hou, Q. Yang, Q. Meng, C. Liu, H.-M. Cheng, Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium-Ion Batteries and Dye-Sensitized Solar Cells, Adv. Energy Mater. 1 (2011) 486-490. https://doi.org/10.1002/aenm.201100001
  16. X. Mathew, JP. Enriquez, A. Romeo, AN. Tiwari, CdTe/CdS solar cells on flexible substrates, Sol. Energy. 77 (2004) 831- 838. https://doi.org/10.1016/j.solener.2004.06.020
  17. W. Zi, Z. Jin, S. Liu, B. Xu, Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology, J. Energy Chem. 27 (2018) 971-989. https://doi.org/10.1016/j.jechem.2018.01.027
  18. AJ. Baca, KJ. Yu, J. Xiao, S. Wang, J. Yoon, JH. Ryu, D. Stevenson, R.G. Nuzzo, A.A. Rockett, Y. Huang, J.A. Rogers, Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs, Energy Environ. Sci. 3 (2010) 208-211. https://doi.org/10.1039/b920862c
  19. DJ. Lipomi, Z. Bao, Stretchable, elastic materials and devices for solar energy conversion, Energy Environ. Sci. 4 (2011) 3314-3328. https://doi.org/10.1039/c1ee01881g
  20. L. Li, S. Zhang, Z. Yang, EES. Berthold, W. Chen, Recent advances of flexible perovskite solar cells, J. Energy Chem. 27 (2018) 673-689. https://doi.org/10.1016/j.jechem.2018.01.003
  21. JK. Sim, S. Kang, R. Nandi, JY. Jo, KU. Jeong, CR. Lee, Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil, Sol. Energy. 162 (2018) 357-363. https://doi.org/10.1016/j.solener.2018.01.053
  22. M. Pagliaro, R. Ciriminna, G. Palmisano, Flexible Solar Cells, ChemSusChem. 1 (2008) 880-891. https://doi.org/10.1002/cssc.200800127
  23. V. Zardetto, G. Mincuzzi, F. De Rossi, F. Di Giacomo, A. Reale, A. Di Carlo, T.M. Brown, Outdoor and diurnal performance of large conformal flexible metal/plastic dye solar cells, Appl. Energy. 113 (2014) 1155-1161. https://doi.org/10.1016/j.apenergy.2013.08.056
  24. K. Sun, F. Liu, J. Huang, C. Yan, N. Song, H. Sun, C. Xue, Y. Zhang, A. Pu, Y. Shen, J.A. Stride, M. Green, X. Hao, Flexible kesterite Cu2ZnSnS4 solar cells with sodium-doped molybdenum back contacts on stainless steel substrates, Sol. Energy Mater. Sol. Cells. 182 (2018) 14-20. https://doi.org/10.1016/j.solmat.2018.02.036
  25. M. Aleksandrova, N. Kurtev, V. Videkov, S. Tzanova, S. Schintke, Material alternative to ITO for transparent conductive electrode in flexible display and photovoltaic devices, Microelectron. Eng. 145 (2015) 112-116. https://doi.org/10.1016/j.mee.2015.03.053
  26. N. Bednar, A. Caviasca, P. Sevela, N. Severino, N. Adamovic, Modelling of flexible thin-film modules for building and product integrated photovoltaics, Sol. Energy Mater. Sol. Cells. 181 (2018) 38-45. https://doi.org/10.1016/j.solmat.2017.12.035
  27. S. Hou, Fiber Solar Cells, Springer Singapore, 2017. https://doi.org/10.1007/978-981-10-2864-9
  28. T. Jayenta Singh, S. Singh, S. Masiul Islam, R. Get, P. Mahala, K. Jolson Singh, Flexible organic solar cells with graphene/PEDOT:PSS Schottky junction on PET substrates, Optik (Stuttg). 181 (2019) 984-992. https://doi.org/10.1016/j.ijleo.2018.12.179
  29. BR. Lee, JS. Goo, YW. Kim, YJ. You, H. Kim, SK. Lee, JW. Shim, TG. Kim, Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications, J. Power Sources. 417 (2019) 61-69. https://doi.org/10.1016/j.jpowsour.2019.02.015
  30. RN. Paranthaman, M. Parans, Wong-Ng, Winnie, Bhattacharya, Semiconductor Materials for Solar Photovoltaic Cells, Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-20331-7
  31. Y. Park, L. Bormann, L. Müller-Meskamp, K. Vandewal, K. Leo, Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes, Org. Electron. 36 (2016) 68-72. https://doi.org/10.1016/j.orgel.2016.05.032
  32. Sergio Pizzini, Advanced Silicon Materials for Photovoltaic Applications, John Wiley & Sons, Inc., 2012. https://doi.org/10.1002/9781118312193
  33. ZF. GUOZHEN SHEN, Flexible Electronics: From Materials To Devices, World Scientific Publishing Company, 2016. https://doi.org/10.1142/9493
  34. K. Lim, S. Jung, JK. Kim, JW. Kang, JH. Kim, SH. Choa, DG. Kim, Flexible PEDOT: PSS/ITO hybrid transparent conducting electrode for organic photovoltaics, Sol. Energy Mater. Sol. Cells. 115 (2013) 71-78. https://doi.org/10.1016/j.solmat.2013.03.028
  35. B. Paci, G. Kakavelakis, A. Generosi, J. Wright, C. Ferrero, E. Stratakis, E. Kymakis, Improving stability of organic devices: a time/space resolved structural monitoring approach applied to plasmonic photovoltaics, Sol. Energy Mater. Sol. Cells. 159 (2017) 617-624. https://doi.org/10.1016/j.solmat.2016.01.003
  36. S. Roy, P. Bermel, Electronic and optical properties of ultrathin 2D tungsten disulfide for photovoltaic applications, Sol. Energy Mater. Sol. Cells. 174 (2018) 370-379. https://doi.org/10.1016/j.solmat.2017.09.011
  37. D. Shahrjerdi, S.W. Bedell, A. Khakifirooz, K. Cheng, Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters, Solid. State. Electron. 117 (2016) 117-122. https://doi.org/10.1016/j.sse.2015.11.023
  38. NSS. Sam-Shajing Sun, Organic Photovoltaics: Mechanisms, Materials, and Devices, CRC Press, 2017.
  39. WC. Oh, S. Chanthai, Y. Areerob, Novel flexible Ag nanoparticles doped on graphene - Ba2GaInO6 as cathode material for enhancement in the power conversion of DSSCs, Sol. Energy. 180 (2019) 510-518. https://doi.org/10.1016/j.solener.2019.01.033
  40. DH. Shin, SW. Seo, JM. Kim, HS. Lee, SH. Choi, Graphene transparent conductive electrodes doped with graphene quantum dots-mixed silver nanowires for highly-flexible organic solar cells, J. Alloys Compd. 744 (2018) 1-6. https://doi.org/10.1016/j.jallcom.2018.02.069
  41. JH. Ahn, BH. Hong, Graphene for displays that bend, Nat. Nanotechnol. 9 (2014) 737. https://doi.org/10.1038/nnano.2014.226
  42. F. Bonaccorso, Z. Sun, T. Hasan, AC. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics. 4 (2010) 611. https://doi.org/10.1038/nphoton.2010.186
  43. C. Lee, X. Wei, JW. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science (80). 321 (2008) 385 LP-388. https://doi.org/10.1126/science.1157996
  44. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, RD. Piner, L. Colombo, RS. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Lett. 9 (2009) 4359-4363. https://doi.org/10.1021/nl902623y
  45. KS. Novoselov, AK. Geim, SV Morozov, D. Jiang, Y. Zhang, SV Dubonos, IV Grigorieva, AA. Firsov, Electric field in atomically thin carbon films, Science (80). 306 (2004) 666. https://doi.org/10.1126/science.1102896
  46. RR. Nair, P. Blake, AN. Grigorenko, KS. Novoselov, TJ. Booth, T. Stauber, NMR. Peres, AK. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science (80). 320 (2008) 1308 LP-1308. https://doi.org/10.1126/science.1156965
  47. YH. Hu, H. Wang, B. Hu, Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy, Chem Sus Chem. 3 (2010) 782-796. https://doi.org/10.1002/cssc.201000061
  48. DH. Shin, CW. Jang, HS. Lee, SW. Seo, SH. Choi, Semitransparent Flexible Organic Solar Cells Employing Doped-Graphene Layers as Anode and Cathode Electrodes, ACS Appl. Mater. Interfaces. 10 (2018) 3596-3601. https://doi.org/10.1021/acsami.7b16730
  49. P. Dong, Y. Zhu, J. Zhang, F. Hao, J. Wu, S. Lei, H. Lin, RH. Hauge, JM. Tour, J. Lou, Vertically Aligned Carbon Nanotubes/Graphene Hybrid Electrode as a TCO- and PtFree Flexible Cathode for Application in Solar Cells, J. Mater. Chem. A. 2 (2014) 20902-20907. https://doi.org/10.1039/C4TA05264A
  50. J. Yin, H. Zhou, Z. Liu, Z. Nie, Y. Li, X. Qi, B. Chen, Y. Zhang, X. Zhang, Indium- and Platinum-Free Counter Electrode for Green Mesoscopic Photovoltaics through Graphene Electrode and Graphene Composite Catalysts: Interfacial Compatibility, ACS Appl. Mater. Interfaces. 8 (2016) 5314-5319. https://doi.org/10.1039/C4TA05264A
  51. H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios, S. Gradečak, Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency, Nano Lett. 14 (2014) 5148-5154. https://doi.org/10.1021/nl501981f
  52. JH. Heo, DH. Shin, ML. Lee, MG. Kang, SH. Im, Efficient Organic-Inorganic Hybrid Flexible Perovskite Solar Cells Prepared by Lamination of Polytriarylamine/CH3NH3PbI3/Anodized Ti Metal Substrate and Graphene/PDMS Transparent Electrode Substrate, ACS Appl. Mater. Interfaces. 10 (2018) 31413-31421. https://doi.org/10.1021/acsami.8b11411
  53. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, YM. Lam, H. Zhang, Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes, ACS Nano. 4 (2010) 5263-5268. https://doi.org/10.1021/nn1015874
  54. CW. Jang, JM. Kim, SH. Choi, Lamination-produced semitransparent/flexible perovskite solar cells with dopedgraphene anode and cathode, J. Alloys Compd. 775 (2019) 905-911. https://doi.org/10.1016/j.jallcom.2018.10.190
  55. Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes, Nano Energy. 28 (2016) 151-157 https://doi.org/10.1016/j.nanoen.2016.08.038.
  56. TJ. Singh, S. Singh, SM. Islam, R. Get, P. Mahala, KJ. Singh, Flexible organic solar cells with graphene/PEDOT:PSS Schottky junction on PET substrates, Optik (Stuttg). 181 (2019) 984-992. https://doi.org/10.1016/j.ijleo.2018.12.179
  57. L. Gomez De Arco, Y. Zhang, CW. Schlenker, K. Ryu, ME. Thompson, C. Zhou, Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics, ACS Nano. 4 (2010) 2865-2873. https://doi.org/10.1021/nn901587x
  58. Y. Dang, Y. Wang, S. Shen, S. Huang, X. Qu, Y. Pang, SRP. Silva, B. Kang, G. Lu, Solution processed hybrid GrapheneMoO3 hole transport layers for improved performance of organic solar cells, Org. Electron. 67 (2019) 95-100. https://doi.org/10.1016/j.orgel.2019.01.013
  59. S. Bellani, L. Najafi, B. Martín-García, A. Ansaldo, AE. Del Rio Castillo, M. Prato, I. Moreels, F. Bonaccorso, GrapheneBased Hole-Selective Layers for High-Efficiency, SolutionProcessed, Large-Area, Flexible, Hydrogen-Evolving Organic Photocathodes, J. Phys. Chem. C. 121 (2017) 21887-21903. https://doi.org/10.1021/acs.jpcc.7b05904
  60. A. Guerrero, M. Haro, S. Bellani, MR. Antognazza, L. Meda, S. Gimenez, J. Bisquert, Organic photoelectrochemical cells with quantitative photocarrier conversion, Energy Environ. Sci. 7 (2014) 3666-3673. https://doi.org/10.1039/C4EE01775G.
  61. MS. Akhtar, S. Kwon, FJ. Stadler, OB. Yang, High efficiency solid state dye sensitized solar cells with graphenepolyethylene oxide composite electrolytes, Nanoscale. 5 (2013) 5403-5411. https://doi.org/10.1039/c3nr00390f