Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Thermal Modeling and Performance Analysis of U-Tube Evacuated Solar Collector using CO2

DOI
https://doi.org/10.31875/2410-2199.2019.06.8
Submitted
August 20, 2021
Published
2018-08-10

Abstract

This study deals with the thermal modeling of U-tube evacuated solar collectors to investigate the heat transfer and performance characteristics. The U-tube evacuated solar collectors are integrated into solar-assisted new generation experimental organic Rankine cycle working with environmentally friendly supercritical CO2. For the modeling, one-dimensional heat transfer analysis is applied to the U-tube collectors for determining the heat transfer characteristics of the collectors as well as the CO2 exit temperature from the collectors for the steady heat transfer process. Additionally, heat loss coefficient and overall heat transfer coefficients are determined for the experimental U-tube collectors. The obtained results are also compared with the results of the experimental study.

References

  1. Naik BK, Varshney A, Muthukumar P, Somayaji C. Modelling and Performance Analysis of U Type Evacuated Tube Solar Collector Using Different Working Fluids. Energy Procedia 2016; 90: 227 – 237. https://doi.org/10.1016/j.egypro.2016.11.189
  2. Zhang XR, Yamaguchi H. An experimental investigation on characteristics of supercritical CO2-based solar Rankine system. International Journal of Energy Research 2010; 35: 1168–1178. https://doi.org/10.1002/er.1755
  3. Singh R, Miller SA, Rowlands AS, Jacobs PA. Dynamic characteristics of a direct-heated supercritical carbon-dioxide Brayton cycle in a solar thermal power plant. Energy 2013; 50: 194-204. https://doi.org/10.1016/j.energy.2012.11.029
  4. Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renewable Energy 2006; 31: 1839–1854. https://doi.org/10.1016/j.renene.2005.09.024
  5. Niu XD, Yamaguchi H, Zhang XR, Iwamoto Y, Hashitani N. Experimental study of heat transfer characteristics of supercritical CO2 fluid in collectors of solar Rankine cycle system. Applied Thermal Engineering 2011; 31: 1279-1285. https://doi.org/10.1016/j.applthermaleng.2010.12.034
  6. Yamaguchi H, Zhang XR, Fujima K, Enomoto M, Sawada N. Solar energy powered Rankine cycle using supercritical CO2. Applied Thermal Engineering 2006; 26: 2345–2354. https://doi.org/10.1016/j.applthermaleng.2006.02.029
  7. Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N. A feasibility study of CO2-based Rankine cycle powered by solar energy. JSME International Journal 2005; 48: 540–547. https://doi.org/10.1299/jsmeb.48.540
  8. Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N. Study of solar energy powered transcritical cycle using supercritical carbon dioxide. International Journal of Energy Research 2006; 30: 1117–1129. https://doi.org/10.1002/er.1201
  9. Cardemil JM, da Silva AK. Parametrized overview of CO2 power cycles for different operation conditions and configurations – An absolute and relative performance analysis. Applied Thermal Engineering 2016; 100:146-154. https://doi.org/10.1016/j.applthermaleng.2015.11.084
  10. Osorio D, Hovsapian R, Ordonez JC. Dynamic analysis of concentrated solar supercritical CO2-based power generation closed-loop cycle. Applied Thermal Engineering 2016; 93: 920-934. https://doi.org/10.1016/j.applthermaleng.2015.10.039
  11. Islam MR, Sumathy K. Carbon Dioxide driven Solar-assisted Heat Pump Water Heating System: A Theoretical Analysis. International Research Journal of Environment Sciences 2013; 2(10): 77-92.
  12. Paradis PL, Rousse DR, Hallé S, Lamarche L, Quesada G. Thermal modeling of evacuated tube solar air collectors. Solar Energy 2015; 115: 708-721. https://doi.org/10.1016/j.solener.2015.03.040
  13. Paradis PL, Rousse DR, Hallé S. A One Dimensional Thermal Model for Evacuated Tubes-Based Solar Collectors. In Proc. of the Third Southern African Solar Energy Conference 2015; pp. 100-105. https://doi.org/10.1016/j.solener.2015.03.040
  14. Ma L, Lu Z, Zhang J, Liang R. Thermal performance analysis of the glass evacuated tube solar collector with U-tube. Building and Environment 2010; 45: 1959-1967. https://doi.org/10.1016/j.buildenv.2010.01.015
  15. Gao Y, Fan R, Zhang XY, An YJ, Wang MX, Gao YK, Yu Y. Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Solar Energy 2014; 107: 714-727. https://doi.org/10.1016/j.solener.2014.05.023
  16. Mishra RK, Garg V, Tiwari GN. Thermal modeling and development of characteristic equations of evacuated tubular collector (ETC). Solar Energy 2015; 116: 165–176. https://doi.org/10.1016/j.solener.2015.04.003
  17. Naik BK, Muthukumar P. Performance assessment of evacuated U-tube solar collector: a numerical study. Sådhanå 2019; 44:23. https://doi.org/10.1007/s12046-018-0974-z
  18. Li X, Dai YJ, Li Y, Wang RZ. Comparative study on two novel intermediate temperature CPC solar collectors with the Ushape evacuated tubular absorber. Solar Energy 2013; 93: 220–234. https://doi.org/10.1016/j.solener.2013.04.002
  19. Aboulmagd A, Padovan A, Oliveski RC, Del Col D. A New Model for the Analysis of Performance in Evacuated Tube Solar Collectors. In Proc. of the International High Performance Buildings Conference 2014; pp. 142.
  20. Yadav M, Saikhedkar NK. Simulation Modelling For the Performance of Evacuated Tube Solar Collector. International Journal of Innovative Research in Science, Engineering and Technology 2017; 6(4): 5634-5642.
  21. Shafieian A, Khiadani M, Nosrati A. Thermal performance of an evacuated tube heat pipe solar water heating system in cold season. Applied Thermal Engineering 2019; 149: 644- 657. https://doi.org/10.1016/j.applthermaleng.2018.12.078
  22. Moslemi HR, Keshtkar MM. Sensitivity analysis and thermal performance optimization of evacuated U-tube solar collector using genetic algorithm. International Journal of Heat and Technology 2018; 36(4): 1193-1202. https://doi.org/10.18280/ijht.360406
  23. Yang J, Jiang Q, Hou J, Luo C. A Study on Thermal Performance of a Novel All-Glass Evacuated Tube Solar Collector Manifold Header with an Inserted Tube. International Journal of Photoenergy 2015; 409517. https://doi.org/10.1155/2015/409517
  24. Zhang XR, Yamaguchi H. An experimental study on evacuated tube solar collector using supercritical CO2. Applied Thermal Engineering 2008; 28: 1225-1233. https://doi.org/10.1016/j.applthermaleng.2007.07.013
  25. Kalogirou SA. Solar Energy Engineering: Processes and Systems. Academic Press: Oxford 2009.
  26. Swinbank WC. Long-wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society 1963; 89(381): 339-348. https://doi.org/10.1002/qj.49708938105
  27. Incropera FP, Dewitt DP, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer, 6th ed. John Wiley & Sons: Hoboken 2007.
  28. Pitla SS, Robinson DM, Groll EA, Ramadhyani S. Heat Transfer from Supercritical Carbon Dioxide in Tube Flow: A Critical, Review. HVAC&R Research 1998; 4(3): 281-301. https://doi.org/10.1080/10789669.1998.10391405
  29. Oh HK, Son CH. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO2 in horizontal macro-tubes. Experimental Thermal and Fluid Science 2010; 34: 1230–1241. https://doi.org/10.1016/j.expthermflusci.2010.05.002