Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 8 (2021)

SCAPS Simulation for Perovskite Solar Cell

DOI
https://doi.org/10.31875/2410-2199.2021.08.3
Submitted
September 26, 2021
Published
2021-04-30

Abstract

Perovskite solar cells are keeping a very high interest in the solar energy world, with an efficiency in constant rise each year. In this study, we designed a tin-based (Hole Transport Material) HTM perovskite solar cell with the novel architecture Au/CH3NH3SnI3/TiO2/ZnO: Al. A simulation has been carried-out by using the SCAPS-1D solar cell capacitance simulator, which is well adapted to study the solar cell behavior. Through the software tool, we have studied the absorber’s layer thickness effect and the model operating temperature by plugging many varied parameters. The encouraging results of: 20.08% conversion efficiency, 32.76mA/cm² short-circuit current density (Jsc), 0.827 V open circuit voltage (Voc), and a fill factor (FF) of 74.06%, are predicted with the obtained optimal parameters.

The results indicate the high aptitude of lead free & HTM perovskite to achieve high efficiency and become a good alternative for the traditional solar cells in the future.

References

  1. Ghahremanirad E, Olyaee S, Nejand BA, Ahmadi V and Abedi K. "Hexagonal Array of Mesoscopic HTM-Based Perovskite Solar Cell with Embedded Plasmonic Nanoparticles", Phys. Status Solidi B 2017; 00: 1700291. https://doi.org/10.1002/pssb.201700291
  2. Roldán-Carmona C, Malinkiewicz O, Soriano A, Mínguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar MI, Khaja Nazeeruddin M and Bolink HJ. "Flexible high efficiency perovskite solar cells"; Energy Environ. Sci 2014; 7: 994-997. https://doi.org/10.1039/c3ee43619e
  3. Burgelman M, Nollet P and Degrave S. "Modelling polycrystalline semiconductor solar cells", Thin Solid Films, 2000; 361-362: 527-532. https://doi.org/10.1016/S0040-6090(99)00825-1
  4. Burgelman M, Decock K, Khelifi S and Abass A. "Advanced electrical simulation of thin film solar cells", Thin Solid Films, 2013; 535: 296-301. https://doi.org/10.1016/j.tsf.2012.10.032
  5. Huang YQ, Su J, Li QF, Wang D, Xu LH and Bai Y." Structure, optical and electrical properties of CH3NH3SnI3 single crystal"; Physica B: Condensed Matter, Volume 2019; 563(15): 107-112. https://doi.org/10.1016/j.physb.2019.03.035
  6. Jin Young Kim, Jin-Wook Lee, Hyun Suk Jung, Hyunjung Shin, and Nam-Gyu Park; "High-Efficiency Perovskite Solar Cells"; Chemical Reviews 2020 120(15): 7867-7918. https://doi.org/10.1021/acs.chemrev.0c00107
  7. Accessed on 26/11/2020: https://www.ossila.com/-pages/perovskites-and-perovskite-solar-cells-anintroduction?fbclid=IwAR0ggO4SayD7simuTeF5eITOPYI9shij1HdaQbwZmdNqug2UoFNUQ9QkYlY.
  8. Accessed on 26/11/2020:https://www.zsw-bw.de/en/-research/photovoltaics/topics/perovskite-solarcells.html?fbclid=IwAR1d48CAZ0TevB-Nf2UZRG5DixfaY06-vRYGdk-kHEhVyDEnCesMNJKsu3w.
  9. Ahmed Ali KANOUN, Phd thesis « Etude théorique et prédictive des nouveaux matériaux pour conception des cellules solaires et applications photovoltaïques », Tlemcen university (2019).