Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Graphene : An Out Standing Material

DOI
https://doi.org/10.31875/2410-2199.2019.06.7
Submitted
January 17, 2019
Published
2019-01-17

Abstract

In photovoltaics, research is aiming to investigate new materials able to push the efficiency limit for solar cells towards the highest values without increasing the fabrication cost.
This paper presents a review about graphene material and its potential use in all technological fields. Due to its high conductivity, transparency and amazing properties. It seems that it has an important place in the next generation of solar cells instead of silicon or thin film based solar cells, researchers found diverse applications for graphene in nanoelectronics, aviation, industry, transport, biomedecine and others.
This paper present a review about the state of art about the graphene material in photovoltaic solar cells where very interesting efficiencies were recorded.

References

  1. NN. Greenwood and A.Earnshaw, "Chemistry of the elements", Pergamon Press, February 1998.
  2. Hogh O. Pierson, "Handbook of carbon graphite, diamond and fullerenes: properties processing and applications", Noyes Publications, 1993 https://doi.org/10.1016/B978-0-8155-1339-1.50018-9
  3. Fritz Cirkel, " Graphite: propriétés, gisements, traitements, et usages", Fb&c Limited, 2018.
  4. FB. Bundy, JS. Kasper; "hexagonal diamond: a new form of carbon"; the journal of chemical physics; vol 46, number 9, 1 may 1967 https://doi.org/10.1063/1.1841236
  5. AK. Geim, "Graphene: status and prospects", Science 19 Jun 2009; 324(5934): 1530-1534. https://doi.org/10.1126/science.1158877
  6. KS. Novoselov, AK. Geim, SV. Morozov, SV. Dubonos, Y.Zhang, D. Jiang, " Room-temperature electric field effect and carrier-type in graphene films", arXiv: cond-mat/0410631
  7. KS. Noroselov, AK. Geim, SV. Morozov, D. Jiang, Y. Zhang, SV. Dubonos, IV. Grigorieva, AA. Firso, "Electric field effect in atomically thin carbon films", arXiv: cond-mat/0410550.
  8. D. Roymayhew, J. Bozym, DC. Punckt, ACS nano 2010; 4: 6203-6211. https://doi.org/10.1021/nn1016428
  9. Y. Zhu, S. Murali, W. Cai, X. Li, JW. Suk, JR. Potts, RS. Ruoff, " Graphene and graphene oxide; synthesis, properties, and applications"; advanced materials 2010, 22, 3906-3924. https://doi.org/10.1002/adma.201001068
  10. AK. Geim, KS. Novoselov, " The rise of graphene", Nature materials 2007; 6: 183-191 https://doi.org/10.1038/nmat1849
  11. KS. Novoselov, AK. Geim, SV. Morosov, D. Jiang, Y. Zhang, SV. Dubonos, IV. Grigorieva, AA. Firsov, "Electric field effect in atomically thin carbon films", Science 2004; 306: 666-669. https://doi.org/10.1126/science.1102896
  12. KS. Novoselov AK. Geim, SV. Morozov, D. Jiang, MI. Katsnelson, IV. Grigorieva, SV. Dubonos & AA. Firsov." Two dimensional gas of massless Dirac fermions in graphene; Nature 2005; 438: 197-200. https://doi.org/10.1038/nature04233
  13. C. Berger, ZS. Tianbo, L. LiAsmerom, Y. OgbazghiRui, F. Zhenting, D. Alexei, NM. Edward, HC. Phillip, NF. Walt and A. de Heer, " Ultrathin epitaxial graphite: two dimensional electron gas properties and a route toward graphene based nanoelectronics", Journal of physical chemistry, 2004; B 108: 19912-19916. https://doi.org/10.1021/jp040650f
  14. C. lee, X. Wei, JW. Kysar, J. Hone, " Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science 321, 385 (2008). https://doi.org/10.1126/science.1157996
  15. A. Fargab, KB. Ranjeet and H. Yashil, "International journal of recent scientific research 2017; 8(5): 16893-16896.
  16. SV. Tkachev, E. Yu. Buslaeva and SP. Gubin, "Graphene: a novel carbon nanomaterial, Neoganicheskie Materialy 2011; 47(1): 5-14. https://doi.org/10.1134/S0020168511010134
  17. AI. Aria, M.Gharib; " Graphene based multijunction flexible solar cell, united states patent application publication March 13, 2012; pp 2-8.
  18. L. Zhang, L. Fan, Z. Li, E. Shi, XM. Li, HB. Li, CY. Ji, Y. Jia, JQ. Wei, KL. Wang, HW. Zhu, DH. Wu, AY. Cao, Nano research 2011, 4, 891-900 https://doi.org/10.1007/s12274-011-0145-6
  19. XS. Li, YW. Zhu, WW. Cai, M Boryslak, BY. Han, D. Chen, RD. Piner, L.Colombo, RS. Ruoff, Nanoletters 2009; 12; 4359-4363 https://doi.org/10.1021/nl902623y
  20. S. Stankovich, DA. Dikin, GHB. Dommett, KM. Kohlhaas, EJ. Zimney, EA. Stach, RD. Piner, ST. Nguyen & RS. Ruoff, "Graphene-based composite materials", nature letters, vol 442, 20 july 2006/ doi:10.1038/nature04969, 282-286 https://doi.org/10.1038/nature04969
  21. S. Zhang, " Study of fluorine-doped tin oxide (FTO) for photovoltaic applications", Doctoral thesis, Communauté Université Grenoble Alpes, March 2017
  22. VK. Jain and AP. Kulshreshtha, " Indium-Tin-Oxide Transparent Conducting Coatings On Silicon Solar Cells And Their 'Figure Of Merit' "; SoLar Energy Materials 4 (1981) 151-158 https://doi.org/10.1016/0165-1633(81)90038-1
  23. X. Wang, L. Zhi, and K. Müllen, "Transparent, conductive graphene electrodes for dye-sensitezed solar cells", Nanoletters, vol 8 n° 1, 2008, 232-327 https://doi.org/10.1021/nl072838r
  24. R. Czerw, B. Foey, D. Tekleab, A. Rubeo, PM. Ajayan, DL. Carroll, Pysical Review B, 2002; 22: 367
  25. A. Anderson, N. Johansson, P. Bröms, N. Yu, D. Lupo, WR. Salaneck, Advanced Materials, 1999; 10: 859 https://doi.org/10.1002/(SICI)1521- 4095(199808)10:113.3.CO;2-T
  26. X. Miao, S. Tongay, MK. Petterson, K. Berke, AG. Rinzler, BR. Appleton, AF. Hebard, "High efficiency graphene solar cells by chemical doping"; arXiv: 1209.0432v1
  27. CC. Chen, M. Aykol, CC. Chang, AFJ. Levi, SB. Cronin; "Graphene-silicon Schottky diodes"; Nanoletters 2011; 11: 1863-1867. https://doi.org/10.1021/nl104364c
  28. Y. Te, Y. Dai, L. Dai, ZJ. Shi, N. Liu, F. Wang, L. Fu, RM. Peng, XN. Wen, ZJ. Chen, ZF. Liu, GG. Qin; "HighPerformance Single CdS Nanowire (Nanobelt) Schottky Junction Solar Cells with Au/Graphene Schottky Electrodes";ACS Applied Materials International, 2010; 2: 3406-3410. https://doi.org/10.1021/am1007672
  29. L. Kavan, JH. Yum and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets, ACS nano, 2011; 5(1): 165-172. https://doi.org/10.1021/nn102353h
  30. DW. Zhang, XD. Li, HB. Li, S. Chen, Z. Sun, XJ. Yin, SM. Huang, "Graphene-based counter electrode for dyesensitized solar cells", Carbon 2011; 49: 5382-5388. https://doi.org/10.1016/j.carbon.2011.08.005
  31. Hyonkwang Choi, Hyunkook Kim, Sookhyun Hwang, Wonbong Choi, Minhyon Jeon; " Dye-sensitized solar cells using graphene-based carbon nano-composite as counter electrode", Solar energy materials & solar cells 2011; 95: 323-325 https://doi.org/10.1016/j.solmat.2010.04.044
  32. KS. Novoselov, VI. Fal'ko, L. Colombo, PR. Gellert, MG. Schwab & K. Kim; " A roadmap for graphene", Nature, vol 490, 11 october 2012, doi: 10.1038/nature11458, 192-200 https://doi.org/10.1038/nature11458
  33. S. Park, SR. Rodney, " Chemical methods for the production of graphene", natural nanotechnology, 2009, 4, 217-224. https://doi.org/10.1038/nnano.2009.58
  34. P. Kissel, R. Erni, WB. Schweizer, MD. Rossell, BT. King, T. Bauer, S.Gotzinger, AD. Schluter and J.Sakamoto; " A twodimensional polymer prepared by organic synthesis"; http://www.nature.com/doifinder/10.1038/nchem.1265.
  35. A. Oliveros, C. Coletti, SE. Saddow, " Chapter 12 - Carbon Based Materials on SiC for Advanced Biomedical Applications"; Silicon Carbide Biotechnology A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications 2012, Pages 431-458. https://doi.org/10.1016/B978-0-12-385906-8.00012-X
  36. Y. Hernandez, V. Nicolosi, M. Lotya, FM. Blighe, Z. Sun, S. De, IT. McGovern, B. Holland, M. Byrne, YK. Gun'Ko, JJ. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, AC. Ferrari & JN. Coleman; " high-yield production of graphene by liquid-phase exfoliation of graphite", Nature Nanotechnology 2008; 3: 563- 568. https://doi.org/10.1038/nnano.2008.215
  37. DR. Dreyer, RS. Ruoff and CW. Bielawski, " From conception to realization: an historical account of graphene and some perspectives for its future", Angew chemical international edition 2010; 49: 9336-9344. https://doi.org/10.1002/anie.201003024
  38. S. Dhar, A. Roy Barman, GX. Ni, X. Wang, XF. Xu, Y. Zheng, S. Tripathy, Ariando, A. Rusydi, KP. Loh, M. Rubhausen, AH. Castro Neto, B. O˝ zyilmaz, and T. Venkatesan, " A new route of graphene layers by selective laser ablation, AIP advances; 1, 022109 (2009) https://doi.org/10.1063/1.3584204
  39. Viet Hung Pham, Tran Viet Cuong, Seung Hyun Hur, Eun Woo Shin, Jae Seong Kim, Jin Suk Chung, Eui Jung Kim, "Fast and simple fabrication of a large transparent
  40. C. Ghung, YK. Kim, D. Shin, SR. Ryoo, BH. Hong, and DH. Min, " Biomedical applications of graphene and graphene oxide", Accounts of chemical research, 2013; 46(10): 2211- 2224. https://doi.org/10.1021/ar300159f
  41. Y. Huang, J. Liang and Y. Chen, " An overview of the applications of graphene based-materials in super capacitors", small 2012, DOI: 10.1002/smll.201102635 chemically-converted graphene film by spray-coating"; carbon 2010; 48: 1945-1951.
  42. F. Bonaccorso, Z. Sun, T. Hasan and AC Ferrari, " Graphene photonics and optoelectronics", Nature photonics, 2010; 4: 611-622. https://doi.org/10.1038/nphoton.2010.186
  43. Z. Liu, Q. Liu, Y. Huang, Y. Ma, S. Yin, X. Zhang, W. Sun, and Y. Chen; "OrganicPhotovoltaic Devices Based on a Novel Acceptor Material: Graphene"; Advanced materials, 2008; 20: 3924-3930. https://doi.org/10.1002/adma.200800366
  44. I. Meric, MY. Han, AF. Young, B. Ozyilmaz, P. Kim & KL. Shepard; "Current saturation in zero-bandgap, topgatedgraphene field-effect transistors", nature nanotechnology 2008; 3: 654-659. https://doi.org/10.1038/nnano.2008.268
  45. P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, PE. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, PM. Ajayan, T. Zhu & J. Lou; "Fracture toughness of graphene; "Fracture toughness of graphene"; nature communications, 5: 3782, |www.nature.com/naturecommunications, 2014. https://doi.org/10.1038/ncomms4782