Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 6 (2019)

Review about Main Requirements for Porphyrin Derivatives as Components of Dye Sensitized Solar Cells

DOI
https://doi.org/10.31875/2410-2199.2019.06.9
Published
2019-01-17

Abstract

The main aim of this review is to present porphyrins as an entry for developing proper light energy capture materials for photovoltaic cells. A critical opinion about the improving of required properties by changing the molecular structure of porphyrins, including various metallations and substitutions (both in meso and ?-position) as well as by introducing anchoring groups, the importance of sterical hindrance and of the capacity of aggregation, was done in order to understand how these structural modifications affects the photoelectrochemical properties and the efficiencies of dyesensitized solar cells. Using of Zn-porphyrins and of Pt-porphyrins was presented in detail.

References

  1. A. Yella, HW. Lee, HN. Tsao, C. Yi, AK. Chandiran, MK. Nazeeruddin, EWG. Diau et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science. 2011; 334: 629-634. https://doi.org/10.1126/science.1209688
  2. SB. Mane, L. Luo, HH. Tsai, CH. Hung, Co-sensitization of free-base and zinc porphyrins: An effective approach to improve the photon-to-current conversion efficiency of dyesensitized solar cells, J. Porphyrins Phthalocyanines. 2015; 19: 695-707. https://doi.org/10.1142/S1088424615500170
  3. B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 1991; 353: 737-740. https://doi.org/10.1038/353737a0
  4. MAKL. Dissanayake, JMKW. Kumari, GKR. Senadeera, CA. Thotawatthage, BE. Mellander, I. Albinsson, A novel multilayered photoelectrode with nitrogen doped TiO2 for efficiency enhancement in dye sensitized solar cells, J. Photochem. Photobiol, A. 2017; 349: 63-72. https://doi.org/10.1016/j.jphotochem.2017.08.067
  5. AN. Banerjee, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2- based nanostructures, Nanotechnol Sci Appl. 2011; 4: 35-65. https://doi.org/10.2147/NSA.S9040
  6. M. Landmann, E. Rauls, WG. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J Phys Condens Matter. 2012; 24: 195503. https://doi.org/10.1088/0953-8984/24/19/195503
  7. M. Pazoki, N. Taghavinia, Y. Abdi, F. Tajabadi, G. Boschloo, A. Hagfeldt, CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells, RSC Adv. 2012; 2: 12278-12285. https://doi.org/10.1039/c2ra21361c
  8. VC. Anitha, JH. Lee, L. Jintae, AN. Banerjee, SW. Joo, BK. Min, Biofilm formation on TiO2 nanotube with controlled pore diameter and surface wettability, Nanotechnology. 2015; 26: 065102. https://doi.org/10.1088/0957-4484/26/6/065102
  9. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, et al. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. B. 2003; 107: 597-606. https://doi.org/10.1021/jp026963x
  10. M. Grätzel, Dye-sensitized solid-state heterojunction solar cells, MRS Bull. 2005; 30: 23-27. https://doi.org/10.1557/mrs2005.4
  11. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, FE. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, N. Khaja, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat Chem. 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
  12. JN. Clifford, E. Martínez-Ferrero, A. Viterisi, E. Palomares, Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells, Chem. Soc. Rev. 2011; 40: 1635-1646. https://doi.org/10.1039/B920664G
  13. D. Wróbel, Organic photovoltaic solar cells: spectroscopic and photoelectric properties of photoactive dyes, C. R. Chim. 2003; 6: 417-429. https://doi.org/10.1016/S1631-0748(03)00052-3
  14. I. Hanyz, D. Wróbel, Photovoltage generation and fluorescence of charged tetraphenylporphyrins with dopa melanin, Cryst. Res. Technol. 2003; 38: 3-5. https://doi.org/10.1002/crat.200310039
  15. GG. Wallace, PC. Dastoor, DL. Officer, CO. Too, Conjugated polymers: New materials for photovoltaics, Chemical Innovation. 2000; 30: 14-22
  16. T. Nagahara, K. Imura, H. Okamoto, Spectral inhomogeneities and spatially resolved dynamics in porphyrin J-aggregate studied in the near-field, Chem. Phys. Lett. 2003; 381: 368-375. https://doi.org/10.1016/j.cplett.2003.09.051
  17. T. Hasobe, H. Imahori, PV. Kamat, TK. Ahn, SK. Kim, D. Kim, A. Fujimoto, et al. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles, J Am Chem Soc. 2005; 127: 1216-1228. https://doi.org/10.1021/ja047768u
  18. EGA. Notaras, M. Fazekas, JJ. Doyle, WJ. Blau, MO. Senge, A2B2 type push-pull porphyrins as reverse saturable and saturable absorbers, Chem. Commun. 2007; 21: 2166-2168. https://doi.org/10.1039/B618996B
  19. G. Di Carlo, AO. Biroli, F. Tessore, S. Caramori, M. Pizzotti, β-Substituted Zn II porphyrins as dyes for DSSC: A possible approach to photovoltaic windows, Coord. Chem. Rev 2018; 358: 153-177. https://doi.org/10.1016/j.ccr.2017.12.012
  20. YC. Chang, CL. Wang, TY. Pan, SH. Hong, CM. Lan, HH. Kuo, CF. Lo et al. Diau, A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells, Chem. Commun. 2011; 47: 8910-8912. https://doi.org/10.1039/c1cc12764k
  21. G. Magnano, D. Marinotto, MP. Cipolla, V. Trifiletti, A. Listorti, PR. Mussini, G. Di Carlo, F. Tessore, M. Manca, A. Orbelli Biroli, M. Pizzotti, Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrinsensitized solar cells, PCCP 2016; 18: 9577-9585. https://doi.org/10.1039/C6CP00129G
  22. MW. Lee, DL. Lee, WN. Yen, CY. Yeh, Synthesis, Optical and Photovoltaic Properties of Porphyrin Dyes, J Macromol Sci A 2009; 46: 730-737. https://doi.org/10.1080/10601320902938558
  23. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxyanchor dyes, Chem Commun 2015; 51: 15894-15897. https://doi.org/10.1039/C5CC06759F
  24. SJ. Lind, KC. Gordon, S. Gambhir, DL. Officer, A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes, PCCP 2009; 11: 5598-5607. https://doi.org/10.1039/b900988d
  25. MK. Nazeeruddin, R. Humphry-Baker, DL. Officer, WM. Campbell, AK. Burrell, M. Grätzel, Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity, Langmuir 2004; 20: 6514-6517. https://doi.org/10.1021/la0496082
  26. A. Yella, HW. Lee, HN. Tsao, C. Yi, AK. Chandiran, MK. Nazeeruddin, EWG. Diau, CY. Yeh, SM. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)- based redox electrolyte exceed 12 percent efficiency, Science 2011; 334: 629-634. https://doi.org/10.1126/science.1209688
  27. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, BF. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, MK. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers Nat. Chem 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
  28. A. Yella, CL. Mai, SM. Zakeeruddin, SN. Chang, CH. Hsieh, CY. Yeh, M. Grätzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers, Angew. Chem Int. Ed 2014; 53: 2973-2977. https://doi.org/10.1002/anie.201309343
  29. T. Morifuji, Y. Takekuma, M. Nagata, Integrated Photon Upconversion Dye-Sensitized Solar Cell by Co-adsorption with Derivative of Pt-Porphyrin and Anthracene on Mesoporous TiO2, ACS Omega 2019; 4: 11271-11275. https://doi.org/10.1021/acsomega.9b01210
  30. AA. Abuelwafa, MSH Choudhury, M. Dongol, MM. ElNahass, T. Soga, The efficiency of ZnO/platinum octaethylporphyrin (PtOEP) nanocomposite photoanode at dye-sensitized solar cells. J. Mater. Sci. - Mater. Electron 2018; 29: 14232-14238. https://doi.org/10.1007/s10854-018-9556-4
  31. HC. Chen, DGH. Hetterscheid, RM. Williams, JI. van der Vlugt, JNH. Reek, AM. Brouwer, Platinum (II)-porphyrin as a sensitizer for visible-light driven water oxidation in neutral phosphate buffer, Energ Environ Sci 2015; 8: 975-982. https://doi.org/10.1039/C4EE03302G
  32. Y. Zems, AG. Moiseev, DF. Perepichka, Convenient Synthesis of a Highly Soluble and Stable Phosphorescent Platinum Porphyrin Dye, Org. Lett 2013; 15: 5330-5333. https://doi.org/10.1021/ol402590c
  33. MK. Kashif, RA. Milhuisen, M. Nippe, J. Hellerstedt, DZ. Zee, NW. Duffy et al. Chang, YB. Cheng, JR. Long, L. Spiccia, U. Bach, Cobalt polypyridyl complexes as transparent solutionprocessable solid-state charge transport materials, Adv Energy Mater 2016; 6: 1600874. https://doi.org/10.1002/aenm.201600874
  34. M. Freitag, F. Giordano, W. Yang, M. Pazoki, Y. Hao, B. Zietz, M. Grätzel, A. Hagfeldt, G. Boschloo, Copper phenanthroline as a fast and high-performance redox mediator for dye-sensitized solar cells, J Phys Chem C 2016; 120: 9595-9603. https://doi.org/10.1021/acs.jpcc.6b01658
  35. S. Mathew, A. Yella, P. Gao, RH. Baker, FE. Curchod, N. Ashari-Astani et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat Chem 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
  36. M. Freitag, G. Boschloo, The revival of dye-sensitized solar cells, Current Opinion in Electrochemistry 2017; 2: 111-119. https://doi.org/10.1016/j.coelec.2017.03.011
  37. F. De Rossi, T. Pontecorvo, T. M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting, Appl Energy 2015; 156: 413-422. https://doi.org/10.1016/j.apenergy.2015.07.031