The main aim of this review is to present porphyrins as an entry for developing proper light energy capture materials for photovoltaic cells. A critical opinion about the improving of required properties by changing the molecular structure of porphyrins, including various metallations and substitutions (both in meso and ?-position) as well as by introducing anchoring groups, the importance of sterical hindrance and of the capacity of aggregation, was done in order to understand how these structural modifications affects the photoelectrochemical properties and the efficiencies of dyesensitized solar cells. Using of Zn-porphyrins and of Pt-porphyrins was presented in detail.
References
A. Yella, HW. Lee, HN. Tsao, C. Yi, AK. Chandiran, MK. Nazeeruddin, EWG. Diau et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science. 2011; 334: 629-634. https://doi.org/10.1126/science.1209688
SB. Mane, L. Luo, HH. Tsai, CH. Hung, Co-sensitization of free-base and zinc porphyrins: An effective approach to improve the photon-to-current conversion efficiency of dyesensitized solar cells, J. Porphyrins Phthalocyanines. 2015; 19: 695-707. https://doi.org/10.1142/S1088424615500170
B. O'Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. 1991; 353: 737-740. https://doi.org/10.1038/353737a0
MAKL. Dissanayake, JMKW. Kumari, GKR. Senadeera, CA. Thotawatthage, BE. Mellander, I. Albinsson, A novel multilayered photoelectrode with nitrogen doped TiO2 for efficiency enhancement in dye sensitized solar cells, J. Photochem. Photobiol, A. 2017; 349: 63-72. https://doi.org/10.1016/j.jphotochem.2017.08.067
AN. Banerjee, The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2- based nanostructures, Nanotechnol Sci Appl. 2011; 4: 35-65. https://doi.org/10.2147/NSA.S9040
M. Landmann, E. Rauls, WG. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J Phys Condens Matter. 2012; 24: 195503. https://doi.org/10.1088/0953-8984/24/19/195503
M. Pazoki, N. Taghavinia, Y. Abdi, F. Tajabadi, G. Boschloo, A. Hagfeldt, CVD-grown TiO2 particles as light scattering structures in dye-sensitized solar cells, RSC Adv. 2012; 2: 12278-12285. https://doi.org/10.1039/c2ra21361c
VC. Anitha, JH. Lee, L. Jintae, AN. Banerjee, SW. Joo, BK. Min, Biofilm formation on TiO2 nanotube with controlled pore diameter and surface wettability, Nanotechnology. 2015; 26: 065102. https://doi.org/10.1088/0957-4484/26/6/065102
K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, et al. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells, J. Phys. Chem. B. 2003; 107: 597-606. https://doi.org/10.1021/jp026963x
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, FE. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, N. Khaja, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat Chem. 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
JN. Clifford, E. Martínez-Ferrero, A. Viterisi, E. Palomares, Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells, Chem. Soc. Rev. 2011; 40: 1635-1646. https://doi.org/10.1039/B920664G
D. Wróbel, Organic photovoltaic solar cells: spectroscopic and photoelectric properties of photoactive dyes, C. R. Chim. 2003; 6: 417-429. https://doi.org/10.1016/S1631-0748(03)00052-3
I. Hanyz, D. Wróbel, Photovoltage generation and fluorescence of charged tetraphenylporphyrins with dopa melanin, Cryst. Res. Technol. 2003; 38: 3-5. https://doi.org/10.1002/crat.200310039
GG. Wallace, PC. Dastoor, DL. Officer, CO. Too, Conjugated polymers: New materials for photovoltaics, Chemical Innovation. 2000; 30: 14-22
T. Nagahara, K. Imura, H. Okamoto, Spectral inhomogeneities and spatially resolved dynamics in porphyrin J-aggregate studied in the near-field, Chem. Phys. Lett. 2003; 381: 368-375. https://doi.org/10.1016/j.cplett.2003.09.051
T. Hasobe, H. Imahori, PV. Kamat, TK. Ahn, SK. Kim, D. Kim, A. Fujimoto, et al. Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles, J Am Chem Soc. 2005; 127: 1216-1228. https://doi.org/10.1021/ja047768u
EGA. Notaras, M. Fazekas, JJ. Doyle, WJ. Blau, MO. Senge, A2B2 type push-pull porphyrins as reverse saturable and saturable absorbers, Chem. Commun. 2007; 21: 2166-2168. https://doi.org/10.1039/B618996B
G. Di Carlo, AO. Biroli, F. Tessore, S. Caramori, M. Pizzotti, β-Substituted Zn II porphyrins as dyes for DSSC: A possible approach to photovoltaic windows, Coord. Chem. Rev 2018; 358: 153-177. https://doi.org/10.1016/j.ccr.2017.12.012
YC. Chang, CL. Wang, TY. Pan, SH. Hong, CM. Lan, HH. Kuo, CF. Lo et al. Diau, A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells, Chem. Commun. 2011; 47: 8910-8912. https://doi.org/10.1039/c1cc12764k
G. Magnano, D. Marinotto, MP. Cipolla, V. Trifiletti, A. Listorti, PR. Mussini, G. Di Carlo, F. Tessore, M. Manca, A. Orbelli Biroli, M. Pizzotti, Influence of alkoxy chain envelopes on the interfacial photoinduced processes in tetraarylporphyrinsensitized solar cells, PCCP 2016; 18: 9577-9585. https://doi.org/10.1039/C6CP00129G
MW. Lee, DL. Lee, WN. Yen, CY. Yeh, Synthesis, Optical and Photovoltaic Properties of Porphyrin Dyes, J Macromol Sci A 2009; 46: 730-737. https://doi.org/10.1080/10601320902938558
K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxyanchor dyes, Chem Commun 2015; 51: 15894-15897. https://doi.org/10.1039/C5CC06759F
SJ. Lind, KC. Gordon, S. Gambhir, DL. Officer, A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes, PCCP 2009; 11: 5598-5607. https://doi.org/10.1039/b900988d
MK. Nazeeruddin, R. Humphry-Baker, DL. Officer, WM. Campbell, AK. Burrell, M. Grätzel, Application of metalloporphyrins in nanocrystalline dye-sensitized solar cells for conversion of sunlight into electricity, Langmuir 2004; 20: 6514-6517. https://doi.org/10.1021/la0496082
A. Yella, HW. Lee, HN. Tsao, C. Yi, AK. Chandiran, MK. Nazeeruddin, EWG. Diau, CY. Yeh, SM. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)- based redox electrolyte exceed 12 percent efficiency, Science 2011; 334: 629-634. https://doi.org/10.1126/science.1209688
S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, BF. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, MK. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers Nat. Chem 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
A. Yella, CL. Mai, SM. Zakeeruddin, SN. Chang, CH. Hsieh, CY. Yeh, M. Grätzel, Molecular engineering of push-pull porphyrin dyes for highly efficient dye-sensitized solar cells: the role of benzene spacers, Angew. Chem Int. Ed 2014; 53: 2973-2977. https://doi.org/10.1002/anie.201309343
T. Morifuji, Y. Takekuma, M. Nagata, Integrated Photon Upconversion Dye-Sensitized Solar Cell by Co-adsorption with Derivative of Pt-Porphyrin and Anthracene on Mesoporous TiO2, ACS Omega 2019; 4: 11271-11275. https://doi.org/10.1021/acsomega.9b01210
AA. Abuelwafa, MSH Choudhury, M. Dongol, MM. ElNahass, T. Soga, The efficiency of ZnO/platinum octaethylporphyrin (PtOEP) nanocomposite photoanode at dye-sensitized solar cells. J. Mater. Sci. - Mater. Electron 2018; 29: 14232-14238. https://doi.org/10.1007/s10854-018-9556-4
HC. Chen, DGH. Hetterscheid, RM. Williams, JI. van der Vlugt, JNH. Reek, AM. Brouwer, Platinum (II)-porphyrin as a sensitizer for visible-light driven water oxidation in neutral phosphate buffer, Energ Environ Sci 2015; 8: 975-982. https://doi.org/10.1039/C4EE03302G
Y. Zems, AG. Moiseev, DF. Perepichka, Convenient Synthesis of a Highly Soluble and Stable Phosphorescent Platinum Porphyrin Dye, Org. Lett 2013; 15: 5330-5333. https://doi.org/10.1021/ol402590c
MK. Kashif, RA. Milhuisen, M. Nippe, J. Hellerstedt, DZ. Zee, NW. Duffy et al. Chang, YB. Cheng, JR. Long, L. Spiccia, U. Bach, Cobalt polypyridyl complexes as transparent solutionprocessable solid-state charge transport materials, Adv Energy Mater 2016; 6: 1600874. https://doi.org/10.1002/aenm.201600874
M. Freitag, F. Giordano, W. Yang, M. Pazoki, Y. Hao, B. Zietz, M. Grätzel, A. Hagfeldt, G. Boschloo, Copper phenanthroline as a fast and high-performance redox mediator for dye-sensitized solar cells, J Phys Chem C 2016; 120: 9595-9603. https://doi.org/10.1021/acs.jpcc.6b01658
S. Mathew, A. Yella, P. Gao, RH. Baker, FE. Curchod, N. Ashari-Astani et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat Chem 2014; 6: 242-247. https://doi.org/10.1038/nchem.1861
F. De Rossi, T. Pontecorvo, T. M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting, Appl Energy 2015; 156: 413-422. https://doi.org/10.1016/j.apenergy.2015.07.031