Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

Fabrication and Characterization of DSSC/Si Tandem Solar Cell with PEDOT:PSS/ITO Buffer Layer

DOI
https://doi.org/10.31875/2410-2199.2020.07.02
Published
2020-01-20

Abstract

In this study, dye-sensitized solar cell (DSSC)/silicon tandem solar cells were fabricated by changing the buffer layer structure. When joining two cells, a buffer layer is important to efficiently transport electrons by suppressing buffer of electrons by a potential barrier. Therefore, we used PEDOT:PSS/ITO as buffer layer structures, and measured their solar cell characteristics. As a result, it was found that the structure in which both PEDOT:PSS layer and ITO layer are stacked as buffer layers is suitable for the buffer layer of DSSC/Si tandem cells. In addition, the characteristics improved each time DMSO was added to PEDOT:PSS, and as a result, the characteristics of tandem solar cells also tended to improve. The maximum conversion efficiency (Voc = 0.78 V, Jsc = 4.87 mA / cm2, FF = 0.62, Eff = 2.35 %) was obtained when the DMSO concentration was 1%. It was suggested that conversion efficiency can be improved by improving the buffer layer.

References

  1. Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol Energy Mater Sol Cells 2017; 173: 37- 42. https://doi.org/10.1016/j.solmat.2017.06.024
  2. Shockley W, Queisser HJ. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics 1961; 32(3): 510-519. https://doi.org/10.1063/1.1736034
  3. Tiedje T, Yablonovitch E, Cody GD, Brooks BG. Limiting efficiency of silicon solar cells. IEEE Trans Electron Devices 1984; 31(5): 711-716. https://doi.org/10.1109/T-ED.1984.21594
  4. Barnett A, Kirkpatrick D, Honsberg C , Moore D, Wanlass M, Emery K, Schwartz R, Carlson D, Bowden S, Aiken D, Gray A, Kurtz S, Kazmerski L, Steiner M, Gray J, Davenport T, Buelow R, Takacs L, Shatz N, Bortz J, Jani O, Goossen K, Kiamilev F, Doolittle A, Ferguson I, Unger B, Schmidt G, Christensen E, Salzman D. Very high efficiency solar cell modules. Photovolt: Res Appl 2009; 17: 75-83. https://doi.org/10.1002/pip.852
  5. Mailoa JP, Bailie CD, Johlin EC, Hoke ET, Akey AJ, Nguyen WH, McGehee MD, Buonassisi T. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl Phys Lett 2015; 106: 121105. https://doi.org/10.1063/1.4914179
  6. Löper P, Moon S-J, De Nicolas SM, Niesen B, Ledinsky M, Nicolay S, Bailat J, Yum J-H, De Wolf S, Ballif C. Organic– inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys Chem Chem Phys 2015; 17(3): 1619-1629. https://doi.org/10.1039/C4CP03788J
  7. Green MA, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Ebinger JH, Ho-Baillie AWH. Solar cell efficiency tables (version 50). Progress in Photovoltaics 2017; 25: 668-676. https://doi.org/10.1002/pip.2909
  8. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nature Communications 2013; 4: 1446. https://doi.org/10.1038/ncomms2411
  9. Bertness KA, Kurtz SR, Friedman DJ, Kibbler AE, Kramer C, Olson JM. 29.5%‐efficient GaInP/GaAs tandem solar cells. Appl Phys Lett 1994; 65: 989. https://doi.org/10.1063/1.112171
  10. Werner J, Weng CH, Walter A, Fesquet L, Seif JP, Wolf SD, Niesen B, Ballif C. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2 . J Phys Chem Lett 2016; 7: 161-166. https://doi.org/10.1021/acs.jpclett.5b02686
  11. Yamamoto A, Tsujino M, Ohkubo M, Hashimoto A. Nitridation effects of substrate surface on the metalorganic chemical vapor deposition growth of InN on Si and α-Al2O3 substrates. Sol Energy Mater Sol Cells 1994; 137(3-4): 415-420. https://doi.org/10.1016/0022-0248(94)90979-2
  12. Nattestad A, Mozer AJ, Fischer MKR, Cheng M-B, Mishra A, Bäuerle P, Bach U. Highly efficient photocathodes for dyesensitized tandem solar cells. Nature Materials 2010; 9: 31- 35. https://doi.org/10.1038/nmat2588
  13. Grätzel M. Review Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology C: Photochemistry Rev 2003; 4(2): 145-153. https://doi.org/10.1016/S1389-5567(03)00026-1
  14. Hoppe H, Sariciftci NS. Organic solar cells: An overview. Journal of Materials Research 2004; 19(7): 1924-1945. https://doi.org/10.1557/JMR.2004.0252
  15. Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A. Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. J Phys Chem B 2004; 108: 8106-8118. https://doi.org/10.1021/jp0359283
  16. Gregg BA, Pichot F, Ferrere S, Fields CL. Interfacial Buffer Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces. C L J Phys Chem B 2001; 105: 1422-1429. https://doi.org/10.1021/jp003000u
  17. Kopidakis N, Benkstein KD, van de Lagemaat J, Frank A. Transport-Limited Buffer of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J Phys Chem B 2003; 107: 11307-11315. https://doi.org/10.1021/jp0304475
  18. Yu H, Zhang S, Zhao H, Will G, Liu P. An efficient and lowcost TiO2 compact layer for performance improvement of dye-sensitized solar cells. Electrochimica Acta 2009; 54(4): 1319-1324. https://doi.org/10.1016/j.electacta.2008.09.025
  19. Jang K, Hong E, Kim JH. Effect of an electrodeposited TiO2 blocking layer on efficiency improvement of dye-sensitized solar cell. Korean J Chem Eng 2012; 29(3): 356-361. https://doi.org/10.1007/s11814-011-0291-2
  20. De Vos A. Detailed balance limit of the efficiency of tandem solar cells. J Phys D: Appl Phys 1980; 13: 839-846. https://doi.org/10.1088/0022-3727/13/5/018
  21. Meillaud F, Shah A, Droz C, Vallat-Sauvain E, Miazza C. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells 2006; 90(18-19): 2952-2959. https://doi.org/10.1016/j.solmat.2006.06.002
  22. Louwet F, Groenendaal L, DHaen J, Manca J, Leenders L, Van Luppen J, Verdonck E. PEDOT/PSS: synthesis, characterization, properties and applications. Synthetic Metals 2003; 135(1-3): 115-117. http://dx.doi.org/10.1016/S0379-6779(02)00518-0
  23. Kwon J, Im MJ, Kim CU, Won SH, Kang SB, Kang SH, Choi IT, Kim HK, Kim IH, Park JH, Choi KJ. Two-terminal DSSC/silicon tandem solar cells exceeding 18% efficiency. Energy Environ Sci 2016; 9: 3657. http://dx.doi.org/10.1039/C6EE02296K
  24. Na SI, Wang G, Kim SS, Kim TW, Oh SH, Yu BK, Lee T, Kim DY. Evolution of nanomorphology and anisotropic conductivity in solvent-modified PEDOT:PSS films for polymeric anodes of polymer solar cells. J Mater Chem 2009; 19: 9045-9053. https://doi.org/10.1039/B915756E
  25. Pei Q, Zuccarello G, Ahlskog M, Inganäs O. Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer 1994; 35(7): 1347-1351. https://doi.org/10.1016/0032-3861(94)90332-8
  26. Cruz-Cruz I, Reyes-Reyes M, Aguilar-Frutis MA, Rodriguez AG, López-Sandoval R. Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films. Synthetic Metals 2010; 160(13-14): 1501-1506. https://doi.org/10.1016/j.synthmet.2010.05.010