Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

Spectral Beam Splitting Technology for Photovoltaic and Concentrating Solar Thermal Hybrid Systems: A Review

DOI
https://doi.org/10.31875/2410-2199.2020.07.7
Published
2020-01-20

Abstract

As a promising technology, spectral beam splitting (SBS) technology is the research focus currently in photovoltaic and concentrating solar thermal (PV/CST) hybrid systems. Spectral splitting filters can optimally exploit the solar spectrum and reach higher conversion efficiencies of solar energy. In this paper, we provide a review of the recently published research in spectral splitting filters and summary the research details of SBS technology, including the proposed methods, types, materials, performance advantages, technical obstacles of the filters. Moreover, the paper presents the research status of the SBS technology and evaluates the prospects of various filters in PV/CST hybrid systems. This review can help the researchers and practitioners better understand the SBS technology and features of different spectral splitting filters for the PV/CST hybrid system.

References

  1. Kumar L, Hasanuzzaman M, Rahim NA. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review. Energy Conversion and Management. 2019;195. https://doi.org/10.1016/j.enconman.2019.05.081
  2. Kumar D, Verma YP, Khanna R, Gupta P. Impact of market prices on energy scheduling of microgrid operating with renewable energy sources and storage. Materials Today: Proceedings. 2020;28. https://doi.org/10.1016/j.matpr.2020.04.894
  3. Administration NE. 15.2 percent growth in solar power generation in December 2019. https://news.solarbe.com/202001/17/319689.html2020-01-17
  4. Kong D, Wang Y, Li M, Keovisar V, Huang M, Yu Q. Experimental study of solar photovoltaic/thermal (PV/T) air collector drying performance. Solar Energy. 2020;208. https://doi.org/10.1016/j.solener.2020.08.067
  5. Wang Y, Zhang C, Zhang Y, Huang X. Performance Analysis of an Improved 30 MW Parabolic Trough Solar Thermal Power Plant. Energy. 2020;213.
  6. Long J, Lu J, Jiang M, Du A, Zhang R, Yongga A. Study on solar energy utilization characteristics of a solar building integrated wall. Applied Thermal Engineering. 2020;175. https://doi.org/10.1016/j.applthermaleng.2020.115289
  7. Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renewable and Sustainable Energy Reviews. 2010;15. https://doi.org/10.1016/j.rser.2010.12.018
  8. Wang G, Yao Y, Lin J, Chen Z, Hu P. Design and thermodynamic analysis of a novel solar CPV and thermal combined system utilizing spectral beam splitter. Renew Energy. 2020;155:1091-102. https://doi.org/10.1016/j.renene.2020.04.024
  9. Tian Y, Zhao CY. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy. 2013;104:538-53. https://doi.org/10.1016/j.apenergy.2012.11.051
  10. Liu Q, Wang Y, Gao Z, Sui J, Jin H, Li H. Experimental investigation on a parabolic trough solar collector for thermal power generation. Science in China Series E: Technological Sciences. 2010;53:52-6. https://doi.org/10.1007/s11431-010-0021-8
  11. Widyolar B, Jiang L, Ferry J, Winston R, Cygan D, Abbasi H. Experimental performance of a two-stage (50×) parabolic trough collector tested to 650 °C using a suspended particulate heat transfer fluid. Appl Energ. 2019;240:436-45. https://doi.org/10.1016/j.apenergy.2019.02.073
  12. Widyolar B, Jiang L, Ferry J, Winston R, Kirk A, Osowski M, et al. Theoretical and experimental performance of a twostage (50X) hybrid spectrum splitting solar collector tested to 600 °C. Appl Energ. 2019;239:514-25. https://doi.org/10.1016/j.apenergy.2019.01.172
  13. Administration NE. January-September photovoltaic power generation of 2005 billion kilowatt-hours increased by 16.9% yearly. https://money.163.com/20/1030/17/FQ712PB400258105.html 2020-10-30.
  14. Ahmed A, Alzahrani M, Shanks K, Sundaram S, Mallick TK. Effect of using an infrared filter on the performance of a silicon solar cell for an ultra-high concentrator photovoltaic system. Materials Letters. 2020;277. https://doi.org/10.1016/j.matlet.2020.128332
  15. Miles RW, Hynes KM, Forbes I. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues. Progress in Crystal Growth & Characterization of Materials. 2005;51:1-42. https://doi.org/10.1016/j.pcrysgrow.2005.10.002
  16. Zhang G, Wei J, Xie H, Wang Z, Xi Y, Khalid M. Performance investigation on a novel spectral splitting concentrating photovoltaic/thermal system based on direct absorption collection. Solar Energy. 2018. https://doi.org/10.1016/j.solener.2018.02.033
  17. Tyagi VV, Kaushik SC, Tyagi SK. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renewable and Sustainable Energy Reviews. 2012;16. https://doi.org/10.1016/j.rser.2011.12.013
  18. Shin G, Jeon JG, Kim JH, Lee JH, Kim HJ, Lee J, et al. Thermocells for Hybrid Photovoltaic/Thermal Systems. Molecules. 2020;25. https://doi.org/10.3390/molecules25081928
  19. Aguilar-Jiménez JA, Velázquez N, Acuña A, Cota R, González E, González L, et al. Techno-economic analysis of a hybrid PV-CSP system with thermal energy storage applied to isolated microgrids. Sol Energy. 2018;174:55-65. https://doi.org/10.1016/j.solener.2018.08.078
  20. Ali HM. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems - A comprehensive review. Sol Energy. 2020;197:163-98. https://doi.org/10.1016/j.solener.2019.11.075
  21. Micheli L, Fernández EF, Almonacid F, Mallick TK, Smestad GP. Performance, limits and economic perspectives for passive cooling of High Concentrator Photovoltaics. Sol Energ Mat Sol C. 2016;153:164-78. https://doi.org/10.1016/j.solmat.2016.04.016
  22. Maka AOM, O'Donovan TS. A review of thermal load and performance characterisation of a high concentrating photovoltaic (HCPV) solar receiver assembly. Sol Energy. 2020;206:35-51. https://doi.org/10.1016/j.solener.2020.05.022
  23. Ju X, Xu C, Hu Y, Han X, Wei G, Du X. A review on the development of photovoltaic/concentrated solar power (PVCSP) hybrid systems. Solar Energy Materials and Solar Cells. 2017;161. https://doi.org/10.1016/j.solmat.2016.12.004
  24. Ju X, El-Samie MMA, Xu C, Yu H, Pan X, Yang Y. A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter. Applied Energy. 2020;264. https://doi.org/10.1016/j.apenergy.2020.114701
  25. (IEA) IEA. Technology roadmap: solar thermal electricity - 2014 edition. https://webstore.iea.org/technology-roadmapsolar-thermal-electricity-2014,2014.
  26. Widyolar BK, Abdelhamid M, Jiang L, Winston R, Yablonovitch E, Scranton G, et al. Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector. Renew Energy. 2017;101:1379-89. https://doi.org/10.1016/j.renene.2016.10.014
  27. Kandilli C. Performance analysis of a novel concentrating photovoltaic combined system. Energ Convers Manage. 2013;67:186-96. https://doi.org/10.1016/j.enconman.2012.11.020
  28. Ju X, Xu C, Han X, Du X, Wei G, Yang Y. A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology. Applied Energy. 2017;187:534-63. https://doi.org/10.1016/j.apenergy.2016.11.087
  29. Mojiri A, Stanley C, Taylor RA, Kalantar-zadeh K, Rosengarten G. A spectrally splitting photovoltaic-thermal hybrid receiver utilising direct absorption and wave interference light filtering. Solar Energy Materials and Solar Cells. 2015;139. https://doi.org/10.1016/j.solmat.2015.03.011
  30. Widyolar B, Jiang L, Abdelhamid M, Winston R. Design and modeling of a spectrum-splitting hybrid CSP-CPV parabolic trough using two-stage high concentration optics and dual junction InGaP/GaAs solar cells. Sol Energy. 2018;165:75- 84. https://doi.org/10.1016/j.solener.2018.03.015
  31. Vivar M, Everett V. A review of optical and thermal transfer fluids used for optical adaptation or beam-splitting in concentrating solar systems. Progress in Photovoltaics: Research and Applications. 2014;22:612-33. https://doi.org/10.1002/pip.2307
  32. Huang G, Curt SR, Wang K, Markides CN. Challenges and opportunities for nanomaterials in spectral splitting for highperformance hybrid solar photovoltaic-thermal applications: A review. Nano Materials Science. 2020. https://doi.org/10.1016/j.nanoms.2020.03.008
  33. Dong W, Feng C, Zuoxu W, Yijie L, Jian W, Qingmei W, et al. Enhanced spectral splitting in a novel solar spectrum optical splitter based on one dimensional photonic crystal heterostructure. Journal of Materiomics. 2021;7(3):648-55.
  34. Goel N, Taylor RA, Otanicar T. A Review of Nanofluid-Based Direct Absorption Solar Collectors: Design Considerations and Experiments with Hybrid PV/Thermal and Direct Steam Generation Collectors. Renewable Energy. 2019;145. https://doi.org/10.1016/j.renene.2019.06.097
  35. ED J. Areas for improvement of the semiconductor solar energy converter. In Transactions of the conference on the use of solar energyTuscan, Arizona: University of Arizona Press; 1955.
  36. Moon RL, James LW, Plas HAV, Yep TO, Chai Y. Multigap solar cell requirements and the performance of AlGaAs and Si cells in concentrated sunlight. Conference Record of the IEEE Photovoltaic Specialists Conference. 1978;1:859-67.
  37. Imenes AG, Mills DR. Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Materials and Solar Cells. 2004;84. https://doi.org/10.1016/j.solmat.2004.01.038
  38. Wang G, Yao Y, Wang B, Hu P. Design and thermodynamic analysis of an innovative hybrid solar PV-CT system with multi-segment PV panels. Sustainable Energy Technologies and Assessments. 2020;37. https://doi.org/10.1016/j.seta.2020.100631
  39. Wang G, Wang F, Shen F, Jiang T, Chen Z, Hu P. Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renewable Energy. 2020;146. https://doi.org/10.1016/j.renene.2019.08.090
  40. Mohammadnia A, Ziapour BM. Investigation effect of a spectral beam splitter on performance of a hybrid CPV/Stirling/TEG solar power system. Applied Thermal Engineering. 2020;180. https://doi.org/10.1016/j.applthermaleng.2020.115799
  41. Yazdanifard F, Ameri M, Taylor RA. Numerical modeling of a concentrated photovoltaic/thermal system which utilizes a PCM and nanofluid spectral splitting. Energy Conversion and Management. 2020;215. https://doi.org/10.1016/j.enconman.2020.112927
  42. Ling Y, Li W, Jin J, Yu Y, Hao Y, Jin H. A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation. Applied Energy. 2020;260. https://doi.org/10.1016/j.apenergy.2019.113631
  43. Wingert R, O'Hern H, Orosz M, Harikumar P, Roberts K, Otanicar T. Spectral beam splitting retrofit for hybrid PV/T using existing parabolic trough power plants for enhanced power output. Sol Energy. 2020;202:1-9. https://doi.org/10.1016/j.solener.2020.03.066
  44. Chendo MAC, Jacobson MR, Osborn DE. Liquid and thin-film filters for hybrid solar energy conversion systems. Solar & Wind Technology. 1987;4. https://doi.org/10.1016/0741-983X(87)90039-7
  45. Shou C, Luo Z, Wang T, Shen W, Rosengarten G, Wei W, et al. Investigation of a broadband TiO2/SiO2 optical thin-film filter for hybrid solar power systems. Applied Energy. 2012;92:298-306. https://doi.org/10.1016/j.apenergy.2011.09.028
  46. Ju X, Xu C, Hu Y, Han X, Wei G, Du X. A review on the development of photovoltaic/concentrated solar power (PVCSP) hybrid systems. Sol Energ Mat Sol C. 2017;161:305- 27. https://doi.org/10.1016/j.solmat.2016.12.004
  47. Crisostomo F, Taylor RA, Zhang T, Perez-Wurfl I, Rosengarten G, Everett V, et al. Experimental testing of SiNx/SiO2 thin film filters for a concentrating solar hybrid PV/T collector. Renewable Energy. 2014;72:79-87. https://doi.org/10.1016/j.renene.2014.06.033
  48. Sabry M, Gottschalg R, Betts TR, Shaltout MAM, Infield DG. Optical filtering of solar radiation to increase performance of concentrator systems. IEEE Photovoltaic Specialists Conference2002.
  49. Han X, Sun Y, Huang J, Zheng J. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter. International Journal of Energy Research. 2020;44. https://doi.org/10.1002/er.5277
  50. Lin J, Ju X, Xu C, Yang Y, Du X. High temperature stability and optical properties investigation of a novel ITO-Therminol 66 nanofluid for spectral splitting PV/T systems. Optical Materials. 2020;109. https://doi.org/10.1016/j.optmat.2020.110373
  51. A IK. Liquid Filters for the UV Visible and Near Infrared. Applied optics. 1971;10. https://doi.org/10.1364/AO.10.002781
  52. Osborn DE, Chendo MAC, Hamdy MA, Luttmann F, Jacobson MR, Macleod HA, et al. Spectral selectivity applied to hybrid concentration systems. Solar Energy Materials. 1986;14. https://doi.org/10.1016/0165-1633(86)90055-9
  53. Adam SA, Ju X, Zhang Z, El-Samie MMA, Xu C. Theoretical investigation of different CPVT configurations based on liquid absorption spectral beam filter. Energy. 2019;189. https://doi.org/10.1016/j.energy.2019.116259
  54. Looser R, Vivar M, Everett V. Spectral characterisation and long-term performance analysis of various commercial Heat Transfer Fluids (HTF) as Direct-Absorption Filters for CPV-T beam-splitting applications. Applied Energy. 2014;113:1496- 511. https://doi.org/10.1016/j.apenergy.2013.09.001
  55. Chendo MAC, Osborn DE, Swenson R. Analysis of spectrally selective liquid absorption filters for hybrid solar energy conversion. Optics & Photonics. 1985. https://doi.org/10.1117/12.966301
  56. Huaxu L, Fuqiang W, Dong Z, Ziming C, Chuanxin Z, Bo L, et al. Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy. 2020;194:116913. https://doi.org/10.1016/j.energy.2020.116913
  57. An W, Li J, Ni J, Taylor RA, Zhu T. Analysis of a temperature dependent optical window for nanofluid-based spectral splitting in PV/T power generation applications. Energy Conversion and Management. 2017;151:23-31. https://doi.org/10.1016/j.enconman.2017.08.080
  58. Hjerrild NE, Mesgari S, Crisostomo F, Scott JA, Amal R, Taylor RA. Hybrid PV/T enhancement using selectively absorbingAg-SiO2/carbon nanofluid. Solar Energy Materials and Solar Cells. 2016;147. https://doi.org/10.1016/j.solmat.2015.12.010
  59. Mirmasoumi S, Pourgol-Mohammad M. A Review on Experimental and Numerical Investigations on Using Nanofluid in Volumetric Solar Energy Collectors. ASME 2014 International Mechanical Engineering Congress & Exposition IMECE20142014. https://doi.org/10.1115/IMECE2014-40339
  60. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12. https://doi.org/10.1016/j.arabjc.2017.05.011
  61. Iurevych O, Gubin S, Dudeck M. Combined receiver of solar radiation with holographic planar concentrator. IOP Conference Series: Materials Science and Engineering. 2012;29:012016. https://doi.org/10.1088/1757-899X/29/1/012016
  62. Ludman JE, Sampson JL, Bradbury RA, Martin JG, Riccobono JR, Sliker G, et al. Photovoltaic systems based on spectrally selective holographic concentrators. Electronic Imaging. 1992. https://doi.org/10.1117/12.59649
  63. Kostuk RK, Castro J, Myer B, Zhang D, Rosenberg G. Holographic elements in solar concentrator and collection systems. Proceedings of SPIE - The International Society for Optical Engineering. 2009;7407. https://doi.org/10.1117/12.829569
  64. V P-K, A G. Hybrid photovoltaic_thermal collector based on a luminescent concentrator. High-efficient low-cost photovoltaics. 2009:177-81.
  65. Widyolar B, Jiang L, Winston R. Spectral beam splitting in hybrid PV/T parabolic trough systems for power generation. Applied Energy. 2018;209:236-50. https://doi.org/10.1016/j.apenergy.2017.10.078
  66. Goel N, Taylor RA, Otanicar T. A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors. Renew Energy. 2020;145:903-13. https://doi.org/10.1016/j.renene.2019.06.097
  67. Lan D, Green MA. The potential and design principle for next‐generation spectrum‐splitting photovoltaics: Targeting 50% efficiency through built‐in filters and generalization of concept. Progress in Photovoltaics: Research and Applications. 2019;27. https://doi.org/10.1002/pip.3081
  68. Mojiri A, Taylor R, Thomsen E, Rosengarten G. Spectral beam splitting for efficient conversion of solar energy-A review. Renewable and Sustainable Energy Reviews. 2013;28:654-63. https://doi.org/10.1016/j.rser.2013.08.026
  69. Xiong K, Lu S, Dong J, Zhou T, Jiang D, Wang R, et al. Lightsplitting photovoltaic system utilizing two dual-junction solar cells. Solar Energy. 2010;84. https://doi.org/10.1016/j.solener.2010.10.011
  70. Zhao Y, Sheng MY. Design of Spectrum Splitting Solar Cell Assemblies. Advances in Optoelectronics & Micro/nanooptics2011.
  71. Khvostikov VP, Vlasov AS, Sorokina SV, Potapovich NS, Andreev VM. High-efficiency (η=39.6%, AM 1.5 D) cascade of photoconverters in solar splitting systems. Semiconductors. 2011;45:792-7. https://doi.org/10.1134/S106378261106011X
  72. Yuan Z, Ming-Yu S, Wei-Xi Z, Yan S, Er-Tao H, Jian-Bo C, et al. A solar photovoltaic system with ideal efficiency close to the theoretical limit. Optics express. 2012;20. https://doi.org/10.1364/OE.20.000A28
  73. Mitchell B, Peharz G, Siefer G, Peters M, Gandy T, Goldschmidt JC, et al. Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency. Progress in Photovoltaics Research & Applications. 2011;19:61-72. https://doi.org/10.1002/pip.988
  74. Eisler C, Flowers C, Warmann E, Lloyd J, Espinet-González P, Darbe S, et al. The Polyhedral Specular Reflector: A Spectrum-Splitting Multijunction Design to Achieve Ultrahigh (>50%) Solar Module Efficiencies. IEEE Journal of Photovoltaics. 2018;PP:1-9. https://doi.org/10.1109/JPHOTOV.2018.2872109
  75. Jiang S, Hu P, Mo S, Chen Z. Optical modeling for a twostage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology. Solar Energy Materials and Solar Cells. 2010;94. https://doi.org/10.1016/j.solmat.2010.05.029
  76. Soule DE, Rechel EF, Smith DW, Willis FA. Efficient Hybrid Photovoltaic-Photothermal Solar Conversion System With Cogeneration1985. https://doi.org/10.1117/12.966302
  77. Imenes AG, Buie D, McKenzie D. The design of broadband, wide-angle__interference filters for solar concentrating systems. Solar Energy Materials and Solar Cells. 2005;90. https://doi.org/10.1016/j.solmat.2005.08.007
  78. Shou-li J, HUPeng, Song-ping M, Ze-shao C. Modeling for two-stage dish concentrating spectral beam splitting/photovoltaic_thermal system. 2009.
  79. U. UT, H. DJ, Tim H. Analysis of a Hybrid PV/T Concept Based on Wavelength Selective Mirror Films. Journal of Solar Energy Engineering. 2014;136. https://doi.org/10.1115/1.4026678
  80. Fisher K, Yu Z, Striling R, Holman Z. PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs. 2017;1850:020004. https://doi.org/10.1063/1.4984328
  81. Yu ZJ, Fisher KC, BrianM.Wheelwright, Angel RP, Holman ZC. PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters. 2015. https://doi.org/10.1109/JPHOTOV.2015.2458571
  82. Yu ZJ, Fisher KC, Meng X, Hyatt JJ, Angel RP, Holman ZC. GaAs/silicon PVMirror tandem photovoltaic mini‐module with 29.6% efficiency with respect to the outdoor global irradiance. Progress in Photovoltaics: Research and Applications. 2019;27:469-75. https://doi.org/10.1002/pip.3095
  83. Liang H, Han H, Wang F, Cheng Z, Lin B, Pan Y, et al. Experimental investigation on spectral splitting of photovoltaic/thermal hybrid system with two-axis sun tracking based on SiO2/TiO2 interference thin film. Energ Convers Manage. 2019;188:230-40. https://doi.org/10.1016/j.enconman.2019.03.060
  84. Wang G, Wang B, Yao Y, Lin J, Hu P. Parametric study on thermodynamic performance of a novel PV panel and thermal hybrid solar system. Applied Thermal Engineering. 2020;180:115807. https://doi.org/10.1016/j.applthermaleng.2020.115807
  85. Wang G, Yao Y, Chen Z, Hu P. Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy. 2019;166:256-66. https://doi.org/10.1016/j.energy.2018.10.089
  86. Wang G, Wang F, Shen F, Chen Z, Hu P. Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector. Energy. 2019;180. https://doi.org/10.1016/j.energy.2019.05.082
  87. Sibin KP, Selvakumar N, Kumar A, Dey A, Sridhara N, Shashikala HD, et al. Design and development of ITO/Ag/ITO spectral beam splitter coating for photovoltaic-thermoelectric hybrid systems. Solar Energy. 2017;141:118-26. https://doi.org/10.1016/j.solener.2016.11.027
  88. Wei D, Cao F, Wu Z, Liu Y, Wang J, Wang Q, et al. Enhanced spectral splitting in a novel solar spectrum optical splitter based on one dimensional photonic crystal heterostructure - ScienceDirect. Journal of Materiomics. 2020. https://doi.org/10.1016/j.jmat.2020.10.014
  89. Hamdan MA, Alqallab EM, Sakhrieh AH. Potential of Solar Cells Performance Enhancement Using Liquid Absorption Filters. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. 2019;43. https://doi.org/10.1007/s40997-018-0165-x
  90. Zhao J, Song Y, Lam W-H, Liu W, Liu Y, Zhang Y, et al. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system. Energy Conversion and Management. 2011;52:1343-53. https://doi.org/10.1016/j.enconman.2010.09.032
  91. An W, Zhang J, Zhu T, Gao N. Investigation on a spectral splitting photovoltaic_thermal hybrid__system based on polypyrrole nanofluid_ Preliminary test. Renewable Energy. 2016;86. https://doi.org/10.1016/j.renene.2015.08.080
  92. An W, Wu J, Zhu T, Zhu Q. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Applied Energy. 2016. https://doi.org/10.1016/j.apenergy.2016.10.004
  93. Han X, Zhao X, Chen X. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renew Energy. 2020;162:55-70. https://doi.org/10.1016/j.renene.2020.07.131
  94. Han X, Chen X, Wang Q, Alelyani SM, Qu J. Investigation of CoSO4-based Ag nanofluids as spectral beam splitters for hybrid PV/T applications. Sol Energy. 2019;177:387-94. https://doi.org/10.1016/j.solener.2018.11.037
  95. Hjerrild NE, Scott JA, Amal R, Taylor RA. Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV_T applications. Renewable Energy. 2018;120. https://doi.org/10.1016/j.renene.2017.12.073
  96. Crisostomo F, Hjerrild N, Mesgari S, Li Q, Taylor RA. A hybrid PV/T collector using spectrally selective absorbing nanofluids. Applied Energy. 2017;193. https://doi.org/10.1016/j.apenergy.2017.02.028
  97. Walshe J, Carron PM, McCormack S, Doran J, Amarandei G. Organic luminescent down-shifting liquid beam splitters for hybrid photovoltaic-thermal (PVT) applications. Solar Energy Materials and Solar Cells. 2021;219. https://doi.org/10.1016/j.solmat.2020.110818
  98. Huang J, Han X, Zhao X, Meng C. Facile preparation of coreshell Ag@SiO2 nanoparticles and their application in spectrally splitting PV/T systems. Energy. 2021;215:119111. https://doi.org/10.1016/j.energy.2020.119111
  99. Kostuk RK, Rosenberg G. Analysis and Design of Holographic Solar Concentrators. Optics + Photonics for Sustainable Energy. 2008. https://doi.org/10.1117/12.793895
  100. Stojanoff CG, Schulat J, Eich M. Bandwidth and angle selective holographic films for solar energy applications. Optics & Photonics. 1999. https://doi.org/10.1117/12.367569
  101. Vorndran S, Russo JM, Wu Y, Gordon M, Kostuk R. Holographic diffraction through aperture spectrum splitting for increased hybrid solar energy conversion efficiency. International Journal of Energy Research. 2015;39. https://doi.org/10.1002/er.3245
  102. Kostuk RK, Vorndran SD, Zhang D, Russo JM, Gordon M. Holographic diffraction-through-aperture spectrum splitting system and method. US20140130843 A1,2014.
  103. Xia XW, Vansant K, Sherif RA, Parfenov AV, Aye TM, Shih MY. Efficient Hybrid Electric and Thermal Energy Generation. Proceedings of SPIE - The International Society for Optical Engineering. 2011;8108:836-81. https://doi.org/10.1117/12.894166
  104. Wei A-C, Chang W-J, Sze J-R. A Side-Absorption Concentrated Module with a Diffractive Optical Element as a Spectral-Beam-Splitter for a Hybrid-Collecting Solar System. Energies. 2020;13. https://doi.org/10.3390/en13010192
  105. Kostuk RK, Castillo J, Russo JM, Rosenberg G. Spectralshifting and holographic planar concentrators for use with photovoltaic solar cells. High & Low Concentration for Solar Electric Applications II. 2007;6649:66490I-I-8. https://doi.org/10.1117/12.736542
  106. Chen Y, Rosenzweig Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Letters. 2008;2:1299-302. https://doi.org/10.1021/nl025767z
  107. Ellmer, Klaus. Past achievements and future challenges in the development of optically transparent electrodes. Nature Photonics. 2012;6:809-17. https://doi.org/10.1038/nphoton.2012.282
  108. Liang H, Wang F, Cheng Z, Xu C, Li G, Shuai Y. Full spectrum solar energy utilization and enhanced solar energy__harvesting via antireflection and scattering performance using biomimetic nanophotonic structure. ES Energy Environ. 2020:29-41.
  109. Winston R, Yablonovitch E, Jiang L, Widyolar BK, Abdelhamid M, Scranton G, et al. Hybrid Solar Collector Using Nonimaging Optics and Photovoltaic Components. SPIE Optical Engineering + Applications. 2015. https://doi.org/10.1117/12.2191943
  110. Widyolar BK, Abdelhamid M, Jiang L, Winston R, Yablonovitch E, Scranton G, et al. Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector. Renewable Energy. 2017;101:1379-89. https://doi.org/10.1016/j.renene.2016.10.014
  111. Ji Y, Ollanik A, Farrar-Foley N, Xu Q, Escarra M. Transmissive Spectrum Splitting Multi-junction Solar Module for Hybrid CPV/CSP System. Photovoltaic Specialist Conference2015.
  112. Wang K, Herrando M, Pantaleo AM, Markides CN. Technoeconomic assessments of hybrid photovoltaic-thermal vs . conventional solar-energy systems: Case studies in heat and power provision to sports centres. Applied Energy. 2019;254. https://doi.org/10.1016/j.apenergy.2019.113657
  113. Wang K, Pantaleo AM, Herrando M, Faccia M, Pesmazoglou I, Franchetti BM, et al. Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms. Renewable Energy. 2020;159. https://doi.org/10.1016/j.renene.2020.05.120
  114. Fernandes MR, Schaefer LA. Long-term environmental impacts of a small-scale spectral filtering concentrated photovoltaic-thermal system. Energy Conversion and Management. 2019;184. https://doi.org/10.1016/j.enconman.2019.01.026
  115. Liang H, Cheng Z, Wang H, Tan J, Wang F. Investigation on Optical Properties and Solar Energy Conversion Efficiency of Spectral Splitting PV/T system. Energy Procedia. 2019;158. https://doi.org/10.1016/j.egypro.2019.01.025
  116. Huaxu L, Fuqiang W, Ziming C, Yong S, Bo L, Yuzhai P. Performance study on optical splitting film-based spectral splitting concentrated photovoltaic/thermal applications under concentrated solar irradiation. Solar Energy. 2020;206. https://doi.org/10.1016/j.solener.2020.05.103
  117. Ding X, Yang Z. Knowledge mapping of platform research: a visual analysis using VOSviewer and CiteSpace. Electronic Commerce Research. 2020. https://doi.org/10.1007/s10660-020-09410-7