Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Development of Solar Energy Systems Based on High Performance Bulk and Film Thermoelectric Modules

DOI
https://doi.org/10.31875/2410-2199.2022.09.05
Submitted
August 29, 2022
Published
2022-08-29

Abstract

Abstract: Due to the increase in energy demand and depletion of natural resources, the development of energy harvesting technologies becomes very important. Thermoelectric devices, based on the direct conversion of heat into electrical energy, are being the essential part of cost-effective, environmental-friendly, and fuel-saving energy sources for power generation, temperature sensors, and thermal management. High reliability and long operation time of thermoelectric energy systems lead to their extensive use in space industry and gas pipe systems. Development and wide application of solar thermoelectric converters (generators) is mainly limited by relatively low thermoelectric conversion efficiency. In this work, we suggest for the first time to use direct conversion of solar energy by systems based on high-performance multistage thermoelectric modules operating in the temperature range of 300 - 900 K for creation of autonomic systems with electric power up to 500 W and electric efficiency up to 15 %. Furthermore, we developed film thermoelectric modules on thin flexible substrates with the figure of merit Z corresponding to that of bulk modules. Such film thermoelectric converters with output voltage of several volts and electric power of several microwatts can be used at micro-solar energy systems.

References

  1. M.A. Zoui, S. Bentouba, J.G. Stocholm, M. Bourouis, A review on thermoelectric generators: Progress and applications, Energies, 13 (2020) 3606. https://doi.org/10.3390/en13143606
  2. S.S. Indira, C.A. Vaithilingam, K.K. Chong, R. Saidur, M. Faizal, S. Abubakar, S. Paiman, A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system, Solar Energy, 201 (2020) 122-148. https://doi.org/10.1016/j.solener.2020.02.090
  3. Z. Dashevsky, P. Konstantinov, S.Y. Skipidarov, New Direction in the Application of Thermoelectric Energy Converters, Semiconductors, 53 (2019) 861-864. https://doi.org/10.1134/S1063782619070066
  4. D. Champier, Thermoelectric generators: A review of applications, Energy Conversion and Management, 140 (2017) 167-181. https://doi.org/10.1016/j.enconman.2017.02.070
  5. T.M. Maslamani, A.I. Omer, M. Majid, Development of solar thermoelectric generator, European Scientific Journal, 10 (2014).
  6. Z. Dashevsky, D. Kaftori, D. Rabinovich, High efficiency thermoelectric unit within an autonomous solar energy converter, in: Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365), IEEE, 1998, pp. 531-534.
  7. H. Field, Solar cell spectral response measurement errors related to spectral band width and chopped light waveform, in: Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, IEEE, 1997, pp. 471-474.
  8. G. Huang, S.R. Curt, K. Wang, C.N. Markides, Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: a review, Nano Materials Science, 2 (2020) 183-203. https://doi.org/10.1016/j.nanoms.2020.03.008
  9. Z. Dashevsky, A. Jarashneli, Y. Unigovski, B. Dzunzda, F. Gao, R.Z. Shneck, Development of a High Perfomance Gas Thermoelectric Generator (TEG) with Possibible Use of Waste Heat, Energies, 15 (2022) 3960. https://doi.org/10.3390/en15113960
  10. S. El Oualid, F. Kosior, A. Dauscher, C. Candolfi, G. Span, E. Mehmedovic, J. Paris, B. Lenoir, Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power, Energy & Environmental Science, 13 (2020) 3579-3591. https://doi.org/10.1039/D0EE02579H
  11. Z. Dashevsky, S. Skipidarov, Investigating the performance of bismuth-antimony telluride, in: Novel Thermoelectric Materials and Device Design Concepts, Springer, 2019, pp. 3-21. https://doi.org/10.1007/978-3-030-12057-3_1
  12. M.K. Rad, A. Rezania, M. Omid, A. Rajabipour, L. Rosendahl, Study on material properties effect for maximization of thermoelectric power generation, Renewable energy, 138 (2019) 236-242. https://doi.org/10.1016/j.renene.2019.01.104
  13. H. Mamur, M. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renewable and Sustainable Energy Reviews, 82 (2018) 4159-4169. https://doi.org/10.1016/j.rser.2017.10.112
  14. M. Maksymuk, B. Dzundza, O. Matkivsky, I. Horichok, R. Shneck, Z. Dashevsky, Development of the high performance thermoelectric unicouple based on Bi2Te3 compounds, Journal of Power Sources, 530 (2022) 231301. https://doi.org/10.1016/j.jpowsour.2022.231301
  15. C. Gayner, K.K. Kar, Recent advances in thermoelectric materials, Progress in Materials Science, 83 (2016) 330-382. https://doi.org/10.1016/j.pmatsci.2016.07.002
  16. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angewandte Chemie International Edition, 48 (2009) 8616-8639. https://doi.org/10.1002/anie.200900598
  17. Y. Gelbstein, Z. Dashevsky, M. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B: Condensed Matter, 363 (2005) 196-205. https://doi.org/10.1016/j.physb.2005.03.022
  18. T. Parashchuk, I. Horichok, A. Kosonowski, O. Cherniushok, P. Wyzga, G. Cempura, A. Kruk, K.T. Wojciechowski, Insight into the transport properties and enhanced thermoelectric performance of n-type Pb1-xSbxTe, Journal of Alloys and Compounds, 860 (2021) 158355. https://doi.org/10.1016/j.jallcom.2020.158355
  19. R. Knura, T. Parashchuk, A. Yoshiasa, K.T. Wojciechowski, Origins of low lattice thermal conductivity of Pb1− xSnx Te alloys for thermoelectric applications, Dalton Transactions, 50 (2021) 4323-4334. https://doi.org/10.1039/D0DT04206D
  20. I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Thermoelectric materials and applications for energy harvesting power generation, Science and technology of advanced materials, 19 (2018) 836-862. https://doi.org/10.1080/14686996.2018.1530938
  21. T. Parashchuk, A. Shabaldin, O. Cherniushok, G. Konstantinov, I. Horichok, A. Burkov, Z. Dashevsky, Enhanced thermoelectric properties of p-type Ge1-xPbxTe alloys due to decrease of lattice thermal conductivity, J. Physica B. , 596 (2020) 412397. https://doi.org/10.1016/j.physb.2020.412397
  22. K. Romanjek, S. Vesin, L. Aixala, T. Baffie, G. Bernard-Granger, J. Dufourcq, High-performance silicon-germanium-based thermoelectric modules for gas exhaust energy scavenging, Journal of Electronic Materials, 44 (2015) 2192-2202. https://doi.org/10.1007/s11664-015-3761-1
  23. K. Delime-Codrin, M. Omprakash, S. Ghodke, R. Sobota, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, T. Takeuchi, Large figure of merit ZT= 1.88 at 873 K achieved with nanostructured Si0.55Ge0.35(P0.10Fe0.01), Applied Physics Express, 12 (2019) 045507. https://doi.org/10.7567/1882-0786/ab08b7
  24. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, M. Dariel, Highly textured Bi2Te3-based materials for thermoelectric energy conversion, Journal of Applied Physics, 101 (2007) 113707. https://doi.org/10.1063/1.2743816
  25. DB. Hyun, JS. Hwang, JD. Shim, TS. Oh, Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method, Journal of materials science, 36 (2001) 1285-1291.
  26. J. Mi, T. Zhu, X. Zhao, J. Ma, Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3, Journal of Applied Physics, 101 (2007) 054314. https://doi.org/10.1063/1.2436927
  27. O. Ben-Yehuda, Y. Gelbstein, Z. Dashevsky, Y. George, M. Dariel, Functionally Graded Bi2Te3 based material for above ambient temperature application, in: 2007 26th International Conference on Thermoelectrics, IEEE, 2007, pp. 82-85.
  28. T. Parashchuk, Z. Dashevsky, K. Wojciechowski, Feasibility of a high stable PbTe: In semiconductor for thermoelectric energy applications, Journal of Applied Physics, 125 (2019) 245103. https://doi.org/10.1063/1.5106422
  29. K.T. Wojciechowski, T. Parashchuk, B. Wiendlocha, O. Cherniushok, Z. Dashevsky, Highly efficient n-type PbTe developed by advanced electronic structure engineering, Journal of Materials Chemistry C, 8 (2020) 13270-13285. https://doi.org/10.1039/D0TC03067H
  30. B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J.-F. Halet, F. Cheviré, C. Boussard-Plédel, M.J. Reece, B. Bureau, Impact of coinage metal insertion on the thermoelectric properties of GeTe solid-state solutions, The Journal of Physical Chemistry C, 122 (2018) 227-235. https://doi.org/10.1021/acs.jpcc.7b10839
  31. Z. Dashevsky, I. Horichok, M. Maksymuk, A.R. Muchtar, B. Srinivasan, T. Mori, Feasibility of high performance in p‐type Ge1-xBixTe materials for thermoelectric modules, Journal of the American Ceramic Society, 105 (2022) 4500-4511. https://doi.org/10.1111/jace.18371
  32. O. Kostyuk, B. Dzundza, M. Maksymuk, V. Bublik, L. Chernyak, Z. Dashevsky, Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb)2Te3, Physics and Chemistry of Solid State, 21 (2020) 628-634. https://doi.org/10.15330/pcss.21.4.628-634
  33. B.M. Goltsman, Z. Dashevsky, V. Kaydanov, N. Kolomoets, Thin films: Physics and application, Nauka, 1986.
  34. T. Parashchuk, O. Kostyuk, L. Nykyruy, Z. Dashevsky, High thermoelectric performance of p-type Bi0.5Sb1.5Te3 films on flexible substrate, Materials Chemistry and Physics, 253 (2020) 123427. https://doi.org/10.1016/j.matchemphys.2020.123427
  35. B. Dzundza, L. Nykyruy, T. Parashchuk, E. Ivakin, Y. Yavorsky, L. Chernyak, Z. Dashevsky, Transport and thermoelectric performance of n-type PbTe films, Physica B: Condensed Matter, 588 (2020) 412178. https://doi.org/10.1016/j.physb.2020.412178
  36. J. Seo, C. Lee, K. Park, Thermoelectric properties of n-type SbI3-doped Bi2Te2.85Se0.15 compound fabricated by hot pressing and hot extrusion, Journal of materials science, 35 (2000) 1549-1554.
  37. N. Bomshtein, G. Spiridonov, Z. Dashevsky, Y. Gelbstien, Thermoelectric, structural, and mechanical properties of spark-plasma-sintered submicro-and microstructured p-type Bi0.5Sb1.5Te3, Journal of Electronic Materials, 41 (2012) 1546-1553. https://doi.org/10.1007/s11664-012-1950-8
  38. L. Prokofieva, D. Pshenay-Severin, P. Konstantinov, A. Shabaldin, Optimum composition of a Bi2Te3− xSex alloy for the n-type leg of a thermoelectric generator, Semiconductors, 43 (2009) 973-976. https://doi.org/10.1134/S1063782609080016
  39. I.T. Witting, F. Ricci, T.C. Chasapis, G. Hautier, G.J. Snyder, The thermoelectric properties of-type bismuth telluride: bismuth selenide alloys, Research, 2020 (2020) 1-15. https://doi.org/10.34133/2020/4361703
  40. V. Kaĭdanov, Y.I. Ravich, Deep and resonance states in AIVBVI semiconductors, Soviet Physics Uspekhi, 28 (1985) 31. https://doi.org/10.1070/PU1985v028n01ABEH003632
  41. V. Kaidanov, Resonance (Quasilocal) states in AIVBVI semiconductors, in: Defect and Diffusion Forum, Trans Tech Publ, 1993, pp. 387-406. https://doi.org/10.4028/www.scientific.net/DDF.103-105.387
  42. Z. Dashevsky, S. Shusterman, M. Dariel, I. Drabkin, Thermoelectric efficiency in graded indium-doped PbTe crystals, Journal of Applied Physics, 92 (2002) 1425-1430. https://doi.org/10.1063/1.1490152
  43. J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Resonant levels in bulk thermoelectric semiconductors, Energy & Environmental Science, 5 (2012) 5510-5530. https://doi.org/10.1039/C1EE02612G
  44. A. Bali, R. Chetty, A. Sharma, G. Rogl, P. Heinrich, S. Suwas, D.K. Misra, P. Rogl, E. Bauer, R.C. Mallik, Thermoelectric properties of In and I doped PbTe, Journal of Applied Physics, 120 (2016) 175101. https://doi.org/10.1063/1.4965865
  45. J. Androulakis, I. Todorov, D.-Y. Chung, S. Ballikaya, G. Wang, C. Uher, M. Kanatzidis, Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light-and heavy-hole valence bands, Physical Review B, 82 (2010) 115209. https://doi.org/10.1103/PhysRevB.82.115209
  46. P. Jood, J.P. Male, S. Anand, Y. Matsushita, Y. Takagiwa, M.G. Kanatzidis, G.J. Snyder, M. Ohta, Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties, Journal of the American Chemical Society, 142 (2020) 15464-15475. https://doi.org/10.1021/jacs.0c07067
  47. T. Parashchuk, B. Wiendlocha, O. Cherniushok, R. Knura, K.T. Wojciechowski, High thermoelectric performance of p-type PbTe enabled by the synergy of resonance scattering and lattice softening, ACS Applied Materials & Interfaces, 13 (2021) 49027-49042. https://doi.org/10.1021/acsami.1c14236
  48. M. Dariel, Z. Dashevsky, A. Jarashnely, S. Shusterman, A. Horowitz, Carrier concentration gradient generated in p-type PbTe crystals by unidirectional solidification, Journal of crystal growth, 234 (2002) 164-170. https://doi.org/10.1016/S0022-0248(01)01660-8
  49. J.P. Male, L. Abdellaoui, Y. Yu, S. Zhang, N. Pieczulewski, O. Cojocaru‐Mirédin, C. Scheu, G.J. Snyder, Dislocations stabilized by point defects increase brittleness in PbTe, Advanced Functional Materials, 31 (2021) 2108006. https://doi.org/10.1002/adfm.202108006
  50. Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M. Dariel, Mechanical properties of PbTe-based thermoelectric semiconductors, Scripta Materialia, 58 (2008) 251-254. https://doi.org/10.1016/j.scriptamat.2007.10.012
  51. Y. Gelbstein, Z. Dashevsky, M.P. Dariel, The search for mechanically stable PbTe based thermoelectric materials, Journal of Applied Physics, 104 (2008) 033702. https://doi.org/10.1063/1.2963359
  52. Z. Dashevsky, L. Dudkin, Generator thermoelectric materials, J. Thermoelectricity, 1 (1993) 93-99.
  53. A. Faghri, Heat pipes: review, opportunities and challenges, Frontiers in Heat Pipes (FHP), 5 (2014). https://doi.org/10.5098/fhp.5.1
  54. S. El Oualid, I. Kogut, M. Benyahia, E. Geczi, U. Kruck, F. Kosior, P. Masschelein, C. Candolfi, A. Dauscher, J.D. Koenig, High Power Density Thermoelectric Generators with Skutterudites, Advanced Energy Materials, 11 (2021) 2100580. https://doi.org/10.1002/aenm.202100580
  55. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515 (2014) 540-544. https://doi.org/10.1038/nature13883
  56. S.V. Boriskina, M.A. Green, K. Catchpole, E. Yablonovitch, M.C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, Roadmap on optical energy conversion, Journal of Optics, 18 (2016) 073004. https://doi.org/10.1088/2040-8978/18/7/073004
  57. S.V. Boriskina, J.K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, G. Chen, Heat meets light on the nanoscale, Nanophotonics, 5 (2016) 134-160. https://doi.org/10.1515/nanoph-2016-0010
  58. M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, Roadmap on plasmonics, Journal of Optics, 20 (2018) 043001. https://doi.org/10.1088/2040-8986/aaa114
  59. W. Xie, Y. Dai, R. Wang, K. Sumathy, Concentrated solar energy applications using Fresnel lenses: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 2588-2606. https://doi.org/10.1016/j.rser.2011.03.031
  60. A. Pfahl, J. Coventry, M. Röger, F. Wolfertstetter, J.F. Vásquez-Arango, F. Gross, M. Arjomandi, P. Schwarzbözl, M. Geiger, P. Liedke, Progress in heliostat development, Solar Energy, 152 (2017) 3-37. https://doi.org/10.1016/j.solener.2017.03.029
  61. L. Li, X. Gao, G. Zhang, W. Xie, F. Wang, W. Yao, Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators, Energy Conversion and Management, 183 (2019) 109-115. https://doi.org/10.1016/j.enconman.2018.12.104
  62. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review, Energy & Environmental Science, 4 (2011) 3779-3804. https://doi.org/10.1039/c1ee01297e
  63. G.J. Snyder, J.R. Lim, C.K. Huang, and J.P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nature materials 2, 528 (2003). https://doi.org/10.1038/nmat943
  64. M. Takashiri, T. Shirakawa, K. Miyazaki, H. Tsukamoto. Fabrication and characterization by bismuth - telluride - based alloy thin-film thermoelectric generators by a flash evaporation method. Sens. Actuators A 138, 329 (2007). https://doi.org/10.1016/j.sna.2007.05.030
  65. J. Kurosaki, A. Yamamoto, S. Tanaka, J. Cannon, K. Miyazaki, and H. Tsukamoto.Fabrication and Evaluation of a Thermoelectric Microdevice on a Free-Standing Substrate. J. Electron. Mater. 38, 1326 (2009). https://doi.org/10.1007/s11664-009-0819-y
  66. P. Fan, Z. Zheng, V.Li, G. Lin.Low-cost flexible thin-film thermoelectric generator on zinc-based thermoelectric material. Appl. Phys. Let. 106, 073901 (2015). https://doi.org/10.1063/1.4909531
  67. M. Takashiri, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, Fabrication and characterization of bismuth-telluride-based alloy thin-film thermoelectric generators by a flash evaporation method. Sens. Actuators A Phys. 138 (2007) 329-334. https://doi.org/10.1016/j.sna.2007.05.030
  68. P. Fan, Z.-H. Zheng, Z.-K. Cai, T.-B Chen, P.-J. Liu, X.-M. Cai, D.-P. Zhang, G.-X. Liang, and J.-T Luo, The high performance of a thin-film thermoelectric generator with heat flow running parallel to film surface, Appl. Phys. Lett. 102, 033904 (2013). https://doi.org/10.1063/1.4788817
  69. M. Mizoshiri, M. Makami, K. Ozaki, K. Kozayashi. Thin-Film Thermoelectric Modules for Power Generation Using Focused Solar Light. J. of Elect. Mat. 41, 1717 (2012). https://doi.org/10.1007/s11664-012-2047-0
  70. K.Tappura, K. Jaakkola. A Thin-Film Thermoelectric Generator for Large Area Applications. Proceeding 2, 779 (2018). https://doi.org/10.3390/proceedings2130779
  71. P. Fan, Z. Zheng, Z. Cai, T. Chen, P. Liu, The high performance of a thin-film thermoelectric generator with heat flow running parallel to film surface, Appl. Phys. Let., 102 (2013). https://doi.org/10.1063/1.4788817
  72. M. Maksymuk, T. Parashchuk, B. Dzundza, L. Nykyruy, L. Chernyak, Z. Dashevsky. Development of the flexible film thermoelectric microgenerator based on Bi2Te3 alloys. J. Materials Today Energy. (2021).
  73. O. Kostyuk, Ya. Yavorsky, B. Dzundza, Z. Dashevsky. Development of thermal detector based on flexible film thermoelectric module. J. Physics and Chemistry of Solid State. 22, 45 (2021). https://doi.org/10.15330/pcss.22.1.45-52