Skip to main navigation menu Skip to main content Skip to site footer


Vol. 9 (2022)

Development of Solar Energy Systems Based on High Performance Bulk and Film Thermoelectric Modules

August 29, 2022


Abstract: Due to the increase in energy demand and depletion of natural resources, the development of energy harvesting technologies becomes very important. Thermoelectric devices, based on the direct conversion of heat into electrical energy, are being the essential part of cost-effective, environmental-friendly, and fuel-saving energy sources for power generation, temperature sensors, and thermal management. High reliability and long operation time of thermoelectric energy systems lead to their extensive use in space industry and gas pipe systems. Development and wide application of solar thermoelectric converters (generators) is mainly limited by relatively low thermoelectric conversion efficiency. In this work, we suggest for the first time to use direct conversion of solar energy by systems based on high-performance multistage thermoelectric modules operating in the temperature range of 300 - 900 K for creation of autonomic systems with electric power up to 500 W and electric efficiency up to 15 %. Furthermore, we developed film thermoelectric modules on thin flexible substrates with the figure of merit Z corresponding to that of bulk modules. Such film thermoelectric converters with output voltage of several volts and electric power of several microwatts can be used at micro-solar energy systems.


  1. M.A. Zoui, S. Bentouba, J.G. Stocholm, M. Bourouis, A review on thermoelectric generators: Progress and applications, Energies, 13 (2020) 3606.
  2. S.S. Indira, C.A. Vaithilingam, K.K. Chong, R. Saidur, M. Faizal, S. Abubakar, S. Paiman, A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system, Solar Energy, 201 (2020) 122-148.
  3. Z. Dashevsky, P. Konstantinov, S.Y. Skipidarov, New Direction in the Application of Thermoelectric Energy Converters, Semiconductors, 53 (2019) 861-864.
  4. D. Champier, Thermoelectric generators: A review of applications, Energy Conversion and Management, 140 (2017) 167-181.
  5. T.M. Maslamani, A.I. Omer, M. Majid, Development of solar thermoelectric generator, European Scientific Journal, 10 (2014).
  6. Z. Dashevsky, D. Kaftori, D. Rabinovich, High efficiency thermoelectric unit within an autonomous solar energy converter, in: Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No. 98TH8365), IEEE, 1998, pp. 531-534.
  7. H. Field, Solar cell spectral response measurement errors related to spectral band width and chopped light waveform, in: Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference-1997, IEEE, 1997, pp. 471-474.
  8. G. Huang, S.R. Curt, K. Wang, C.N. Markides, Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: a review, Nano Materials Science, 2 (2020) 183-203.
  9. Z. Dashevsky, A. Jarashneli, Y. Unigovski, B. Dzunzda, F. Gao, R.Z. Shneck, Development of a High Perfomance Gas Thermoelectric Generator (TEG) with Possibible Use of Waste Heat, Energies, 15 (2022) 3960.
  10. S. El Oualid, F. Kosior, A. Dauscher, C. Candolfi, G. Span, E. Mehmedovic, J. Paris, B. Lenoir, Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power, Energy & Environmental Science, 13 (2020) 3579-3591.
  11. Z. Dashevsky, S. Skipidarov, Investigating the performance of bismuth-antimony telluride, in: Novel Thermoelectric Materials and Device Design Concepts, Springer, 2019, pp. 3-21.
  12. M.K. Rad, A. Rezania, M. Omid, A. Rajabipour, L. Rosendahl, Study on material properties effect for maximization of thermoelectric power generation, Renewable energy, 138 (2019) 236-242.
  13. H. Mamur, M. Bhuiyan, F. Korkmaz, M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications, Renewable and Sustainable Energy Reviews, 82 (2018) 4159-4169.
  14. M. Maksymuk, B. Dzundza, O. Matkivsky, I. Horichok, R. Shneck, Z. Dashevsky, Development of the high performance thermoelectric unicouple based on Bi2Te3 compounds, Journal of Power Sources, 530 (2022) 231301.
  15. C. Gayner, K.K. Kar, Recent advances in thermoelectric materials, Progress in Materials Science, 83 (2016) 330-382.
  16. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angewandte Chemie International Edition, 48 (2009) 8616-8639.
  17. Y. Gelbstein, Z. Dashevsky, M. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B: Condensed Matter, 363 (2005) 196-205.
  18. T. Parashchuk, I. Horichok, A. Kosonowski, O. Cherniushok, P. Wyzga, G. Cempura, A. Kruk, K.T. Wojciechowski, Insight into the transport properties and enhanced thermoelectric performance of n-type Pb1-xSbxTe, Journal of Alloys and Compounds, 860 (2021) 158355.
  19. R. Knura, T. Parashchuk, A. Yoshiasa, K.T. Wojciechowski, Origins of low lattice thermal conductivity of Pb1− xSnx Te alloys for thermoelectric applications, Dalton Transactions, 50 (2021) 4323-4334.
  20. I. Petsagkourakis, K. Tybrandt, X. Crispin, I. Ohkubo, N. Satoh, T. Mori, Thermoelectric materials and applications for energy harvesting power generation, Science and technology of advanced materials, 19 (2018) 836-862.
  21. T. Parashchuk, A. Shabaldin, O. Cherniushok, G. Konstantinov, I. Horichok, A. Burkov, Z. Dashevsky, Enhanced thermoelectric properties of p-type Ge1-xPbxTe alloys due to decrease of lattice thermal conductivity, J. Physica B. , 596 (2020) 412397.
  22. K. Romanjek, S. Vesin, L. Aixala, T. Baffie, G. Bernard-Granger, J. Dufourcq, High-performance silicon-germanium-based thermoelectric modules for gas exhaust energy scavenging, Journal of Electronic Materials, 44 (2015) 2192-2202.
  23. K. Delime-Codrin, M. Omprakash, S. Ghodke, R. Sobota, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, T. Takeuchi, Large figure of merit ZT= 1.88 at 873 K achieved with nanostructured Si0.55Ge0.35(P0.10Fe0.01), Applied Physics Express, 12 (2019) 045507.
  24. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, M. Dariel, Highly textured Bi2Te3-based materials for thermoelectric energy conversion, Journal of Applied Physics, 101 (2007) 113707.
  25. DB. Hyun, JS. Hwang, JD. Shim, TS. Oh, Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method, Journal of materials science, 36 (2001) 1285-1291.
  26. J. Mi, T. Zhu, X. Zhao, J. Ma, Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3, Journal of Applied Physics, 101 (2007) 054314.
  27. O. Ben-Yehuda, Y. Gelbstein, Z. Dashevsky, Y. George, M. Dariel, Functionally Graded Bi2Te3 based material for above ambient temperature application, in: 2007 26th International Conference on Thermoelectrics, IEEE, 2007, pp. 82-85.
  28. T. Parashchuk, Z. Dashevsky, K. Wojciechowski, Feasibility of a high stable PbTe: In semiconductor for thermoelectric energy applications, Journal of Applied Physics, 125 (2019) 245103.
  29. K.T. Wojciechowski, T. Parashchuk, B. Wiendlocha, O. Cherniushok, Z. Dashevsky, Highly efficient n-type PbTe developed by advanced electronic structure engineering, Journal of Materials Chemistry C, 8 (2020) 13270-13285.
  30. B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J.-F. Halet, F. Cheviré, C. Boussard-Plédel, M.J. Reece, B. Bureau, Impact of coinage metal insertion on the thermoelectric properties of GeTe solid-state solutions, The Journal of Physical Chemistry C, 122 (2018) 227-235.
  31. Z. Dashevsky, I. Horichok, M. Maksymuk, A.R. Muchtar, B. Srinivasan, T. Mori, Feasibility of high performance in p‐type Ge1-xBixTe materials for thermoelectric modules, Journal of the American Ceramic Society, 105 (2022) 4500-4511.
  32. O. Kostyuk, B. Dzundza, M. Maksymuk, V. Bublik, L. Chernyak, Z. Dashevsky, Development of Spark Plasma Syntering (SPS) technology for preparation of nanocrystalline p-type thermoelctrics based on (BiSb)2Te3, Physics and Chemistry of Solid State, 21 (2020) 628-634.
  33. B.M. Goltsman, Z. Dashevsky, V. Kaydanov, N. Kolomoets, Thin films: Physics and application, Nauka, 1986.
  34. T. Parashchuk, O. Kostyuk, L. Nykyruy, Z. Dashevsky, High thermoelectric performance of p-type Bi0.5Sb1.5Te3 films on flexible substrate, Materials Chemistry and Physics, 253 (2020) 123427.
  35. B. Dzundza, L. Nykyruy, T. Parashchuk, E. Ivakin, Y. Yavorsky, L. Chernyak, Z. Dashevsky, Transport and thermoelectric performance of n-type PbTe films, Physica B: Condensed Matter, 588 (2020) 412178.
  36. J. Seo, C. Lee, K. Park, Thermoelectric properties of n-type SbI3-doped Bi2Te2.85Se0.15 compound fabricated by hot pressing and hot extrusion, Journal of materials science, 35 (2000) 1549-1554.
  37. N. Bomshtein, G. Spiridonov, Z. Dashevsky, Y. Gelbstien, Thermoelectric, structural, and mechanical properties of spark-plasma-sintered submicro-and microstructured p-type Bi0.5Sb1.5Te3, Journal of Electronic Materials, 41 (2012) 1546-1553.
  38. L. Prokofieva, D. Pshenay-Severin, P. Konstantinov, A. Shabaldin, Optimum composition of a Bi2Te3− xSex alloy for the n-type leg of a thermoelectric generator, Semiconductors, 43 (2009) 973-976.
  39. I.T. Witting, F. Ricci, T.C. Chasapis, G. Hautier, G.J. Snyder, The thermoelectric properties of-type bismuth telluride: bismuth selenide alloys, Research, 2020 (2020) 1-15.
  40. V. Kaĭdanov, Y.I. Ravich, Deep and resonance states in AIVBVI semiconductors, Soviet Physics Uspekhi, 28 (1985) 31.
  41. V. Kaidanov, Resonance (Quasilocal) states in AIVBVI semiconductors, in: Defect and Diffusion Forum, Trans Tech Publ, 1993, pp. 387-406.
  42. Z. Dashevsky, S. Shusterman, M. Dariel, I. Drabkin, Thermoelectric efficiency in graded indium-doped PbTe crystals, Journal of Applied Physics, 92 (2002) 1425-1430.
  43. J.P. Heremans, B. Wiendlocha, A.M. Chamoire, Resonant levels in bulk thermoelectric semiconductors, Energy & Environmental Science, 5 (2012) 5510-5530.
  44. A. Bali, R. Chetty, A. Sharma, G. Rogl, P. Heinrich, S. Suwas, D.K. Misra, P. Rogl, E. Bauer, R.C. Mallik, Thermoelectric properties of In and I doped PbTe, Journal of Applied Physics, 120 (2016) 175101.
  45. J. Androulakis, I. Todorov, D.-Y. Chung, S. Ballikaya, G. Wang, C. Uher, M. Kanatzidis, Thermoelectric enhancement in PbTe with K or Na codoping from tuning the interaction of the light-and heavy-hole valence bands, Physical Review B, 82 (2010) 115209.
  46. P. Jood, J.P. Male, S. Anand, Y. Matsushita, Y. Takagiwa, M.G. Kanatzidis, G.J. Snyder, M. Ohta, Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties, Journal of the American Chemical Society, 142 (2020) 15464-15475.
  47. T. Parashchuk, B. Wiendlocha, O. Cherniushok, R. Knura, K.T. Wojciechowski, High thermoelectric performance of p-type PbTe enabled by the synergy of resonance scattering and lattice softening, ACS Applied Materials & Interfaces, 13 (2021) 49027-49042.
  48. M. Dariel, Z. Dashevsky, A. Jarashnely, S. Shusterman, A. Horowitz, Carrier concentration gradient generated in p-type PbTe crystals by unidirectional solidification, Journal of crystal growth, 234 (2002) 164-170.
  49. J.P. Male, L. Abdellaoui, Y. Yu, S. Zhang, N. Pieczulewski, O. Cojocaru‐Mirédin, C. Scheu, G.J. Snyder, Dislocations stabilized by point defects increase brittleness in PbTe, Advanced Functional Materials, 31 (2021) 2108006.
  50. Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, M. Dariel, Mechanical properties of PbTe-based thermoelectric semiconductors, Scripta Materialia, 58 (2008) 251-254.
  51. Y. Gelbstein, Z. Dashevsky, M.P. Dariel, The search for mechanically stable PbTe based thermoelectric materials, Journal of Applied Physics, 104 (2008) 033702.
  52. Z. Dashevsky, L. Dudkin, Generator thermoelectric materials, J. Thermoelectricity, 1 (1993) 93-99.
  53. A. Faghri, Heat pipes: review, opportunities and challenges, Frontiers in Heat Pipes (FHP), 5 (2014).
  54. S. El Oualid, I. Kogut, M. Benyahia, E. Geczi, U. Kruck, F. Kosior, P. Masschelein, C. Candolfi, A. Dauscher, J.D. Koenig, High Power Density Thermoelectric Generators with Skutterudites, Advanced Energy Materials, 11 (2021) 2100580.
  55. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515 (2014) 540-544.
  56. S.V. Boriskina, M.A. Green, K. Catchpole, E. Yablonovitch, M.C. Beard, Y. Okada, S. Lany, T. Gershon, A. Zakutayev, M.H. Tahersima, Roadmap on optical energy conversion, Journal of Optics, 18 (2016) 073004.
  57. S.V. Boriskina, J.K. Tong, W.-C. Hsu, B. Liao, Y. Huang, V. Chiloyan, G. Chen, Heat meets light on the nanoscale, Nanophotonics, 5 (2016) 134-160.
  58. M.I. Stockman, K. Kneipp, S.I. Bozhevolnyi, S. Saha, A. Dutta, J. Ndukaife, N. Kinsey, H. Reddy, U. Guler, V.M. Shalaev, Roadmap on plasmonics, Journal of Optics, 20 (2018) 043001.
  59. W. Xie, Y. Dai, R. Wang, K. Sumathy, Concentrated solar energy applications using Fresnel lenses: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 2588-2606.
  60. A. Pfahl, J. Coventry, M. Röger, F. Wolfertstetter, J.F. Vásquez-Arango, F. Gross, M. Arjomandi, P. Schwarzbözl, M. Geiger, P. Liedke, Progress in heliostat development, Solar Energy, 152 (2017) 3-37.
  61. L. Li, X. Gao, G. Zhang, W. Xie, F. Wang, W. Yao, Combined solar concentration and carbon nanotube absorber for high performance solar thermoelectric generators, Energy Conversion and Management, 183 (2019) 109-115.
  62. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review, Energy & Environmental Science, 4 (2011) 3779-3804.
  63. G.J. Snyder, J.R. Lim, C.K. Huang, and J.P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nature materials 2, 528 (2003).
  64. M. Takashiri, T. Shirakawa, K. Miyazaki, H. Tsukamoto. Fabrication and characterization by bismuth - telluride - based alloy thin-film thermoelectric generators by a flash evaporation method. Sens. Actuators A 138, 329 (2007).
  65. J. Kurosaki, A. Yamamoto, S. Tanaka, J. Cannon, K. Miyazaki, and H. Tsukamoto.Fabrication and Evaluation of a Thermoelectric Microdevice on a Free-Standing Substrate. J. Electron. Mater. 38, 1326 (2009).
  66. P. Fan, Z. Zheng, V.Li, G. Lin.Low-cost flexible thin-film thermoelectric generator on zinc-based thermoelectric material. Appl. Phys. Let. 106, 073901 (2015).
  67. M. Takashiri, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, Fabrication and characterization of bismuth-telluride-based alloy thin-film thermoelectric generators by a flash evaporation method. Sens. Actuators A Phys. 138 (2007) 329-334.
  68. P. Fan, Z.-H. Zheng, Z.-K. Cai, T.-B Chen, P.-J. Liu, X.-M. Cai, D.-P. Zhang, G.-X. Liang, and J.-T Luo, The high performance of a thin-film thermoelectric generator with heat flow running parallel to film surface, Appl. Phys. Lett. 102, 033904 (2013).
  69. M. Mizoshiri, M. Makami, K. Ozaki, K. Kozayashi. Thin-Film Thermoelectric Modules for Power Generation Using Focused Solar Light. J. of Elect. Mat. 41, 1717 (2012).
  70. K.Tappura, K. Jaakkola. A Thin-Film Thermoelectric Generator for Large Area Applications. Proceeding 2, 779 (2018).
  71. P. Fan, Z. Zheng, Z. Cai, T. Chen, P. Liu, The high performance of a thin-film thermoelectric generator with heat flow running parallel to film surface, Appl. Phys. Let., 102 (2013).
  72. M. Maksymuk, T. Parashchuk, B. Dzundza, L. Nykyruy, L. Chernyak, Z. Dashevsky. Development of the flexible film thermoelectric microgenerator based on Bi2Te3 alloys. J. Materials Today Energy. (2021).
  73. O. Kostyuk, Ya. Yavorsky, B. Dzundza, Z. Dashevsky. Development of thermal detector based on flexible film thermoelectric module. J. Physics and Chemistry of Solid State. 22, 45 (2021).