Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

Review of the PV Electricity Production Estimate under the Effect of Climatic Disturbances and Sunspots by Using Deep-Learning Tools

DOI
https://doi.org/10.31875/2410-2199.2020.07.8
Submitted
January 20, 2020
Published
2020-01-20

Abstract

The mathematical models used in the estimation of GHI on the Earth's surface are inconvenient because they always assume that the sky clarity index is constant. Hence, these models are often confronted with long-period empirical ground measurements that may exceeds 11 years. The impact of cloud cover on an electric power generation site is a very critical parameter for installing a solar power plant and evaluating its productivity. The state of knowledge about the sun influence, the greenhouse effect on climate change, and cloud occurrence can’t be described in a mathematical or numerical model.
Therefore, in this paper, we propose the use of Deep-Learning techniques to predict any site’s productivity by analyzing its potential insolation. We also suggest the analysis of the ground and satellite- based measurements collected over 30 years. We propose the estimation of future climate change affecting cloud cover.

References

  1. Derouich, W., Besbes, M., &Olivencia, J. D. (2014). Prefeasibility study of a solar power plant project and optimization of a meteorological station performance. Journal of applied research and technology, 12(1), 72-79. https://doi.org/10.1016/S1665-6423(14)71607-4
  2. Othman, A. B., Belkilani, K., & Besbes, M. (2017). Energy Reports.
  3. Kaouther, B., Othman, A., & Besbes, M. (2018, June). Estimation of Global and Direct Solar Radiation in Tunisia Based on Geostationary Satellite Imagery. In 2018 IEEE PES/IAS PowerAfrica (pp. 190-194). IEEE. https://doi.org/10.1109/PowerAfrica.2018.8521155
  4. Belkilani, K., Othman, A. B., & Besbes, M. (2018) (a). Estimation and experimental evaluation of the shortfall of photovoltaic plants in Tunisia: case study of the use of titled surfaces. Applied Physics A, 124(2), 179. https://doi.org/10.1007/s00339-018-1581-x
  5. Belkilani, Kaouther, Afef Ben Othman, and Mongi Besbes (2018) (b). "Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia." Applied Physics A 124.2 (2018): 122. https://doi.org/10.1007/s00339-018-1551-3
  6. Fathallah, M. A. B., Othman, A. B., & Besbes, M. (2018). Modeling a photovoltaic energy storage system based on super capacitor, simulation and evaluation of experimental performance. Applied Physics A, 124(2), 120. https://doi.org/10.1007/s00339-018-1549-x
  7. Othman, A. B., Fathallah, M. A. B., & Besbes, M. (2019). Robust control of a photovoltaic pumping system with supercapacitor storage, P&O algorithm and pole placement technique. Energy Systems, 10(4), 1017-1041. https://doi.org/10.1007/s12667-018-0295-7
  8. Zharkova, V. V., Arzner, K., Benz, A. O., Browning, P., Dauphin, C., Emslie, A. G., & Petrosian, V. (2011). Recent advances in understanding particle acceleration processes in solar flares. Space science reviews, 159(1-4), 357. https://doi.org/10.1007/s11214-011-9803-y
  9. Zharkova, V. V., Aboudarham, J., Zharkov, S., Ipson, S. S., Benkhalil, A. K., & Fuller, N. (2005). Solar feature catalogues in EGSO. Solar Physics, 228(1-2), 361-375. https://doi.org/10.1007/s11207-005-5623-0
  10. Shepherd, S. J., Zharkov, S. I., & Zharkova, V. V. (2014). Prediction of solar activity from solar background magnetic field variations in cycles 21-23. The Astrophysical Journal, 795(1), 46. https://doi.org/10.1088/0004-637X/795/1/46
  11. Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38(1). https://doi.org/10.1029/2010GL045777
  12. Wang, Y., Ye, P., Zhou, G., Wang, S., Wang, S., Yan, Y., & Wang, J. (2005). The interplanetary responses to the great solar activities in late October 2003. Solar Physics, 226(2), 337-357. https://doi.org/10.1007/s11207-005-6877-2
  13. Qahwaji, R., &Colak, T. (2006). Neural network-based prediction of solar activities. CITSA2006: Orlando, 4-7.
  14. Beer, J., Tobias, S., & Weiss, N. (1998). An active Sun throughout the Maunder minimum. Solar Physics, 181(1), 237-249. https://doi.org/10.1023/A:1005026001784
  15. Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., & Tomas, R. A. (2007). Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proceedings of the National Academy of Sciences, 104(10), 3713-3718. https://doi.org/10.1073/pnas.0605064103
  16. DeLand, M. T., & Cebula, R. P. (2012). Solar UV variations during the decline of Cycle 23. Journal of Atmospheric and Solar-Terrestrial Physics, 77, 225-234. https://doi.org/10.1016/j.jastp.2012.01.007
  17. White, W. B., Lean, J., Cayan, D. R., &Dettinger, M. D. (1997). Response of global upper ocean temperature to changing solar irradiance. Journal of Geophysical Research: Oceans, 102(C2), 3255-3266. https://doi.org/10.1029/96JC03549
  18. Krivova, N. A., & Solanki, S. K. (2008). Models of solar irradiance variations: Current status. Journal of Astrophysics and Astronomy, 29(1-2), 151-158. https://doi.org/10.1007/s12036-008-0018-x
  19. Unruh, T., Rempe, J., McGregor, D., Ugorowski, P., &Reichenberger, M. (2012). NEET Micro-Pocket Fission Detector--FY 2012 Status Report (No. INL/EXT-12-27274). Idaho National Laboratory (INL).
  20. Lean, J. L., & DeLand, M. T. (2012). How does the Sun's spectrum vary?. Journal of Climate, 25(7), 2555-2560. https://doi.org/10.1175/JCLI-D-11-00571.1
  21. Cahalan, R. F., Wen, G., Harder, J. W., & Pilewskie, P. (2010). Temperature responses to spectral solar variability on decadal time scales. Geophysical Research Letters, 37(7). https://doi.org/10.1029/2009GL041898
  22. Lean, J., Rottman, G., Harder, J., & Kopp, G. (2005). SORCE contributions to new understanding of global change and solar variability. In The Solar Radiation and Climate Experiment (SORCE) (pp. 27-53). Springer, New York, NY. https://doi.org/10.1007/0-387-37625-9_3
  23. Haigh, I. D., Wijeratne, E. M. S., MacPherson, L. R., Pattiaratchi, C. B., Mason, M. S., Crompton, R. P., & George, S. (2014). Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level. Climate Dynamics, 42(1-2), 121-138. https://doi.org/10.1007/s00382-012-1652-1
  24. Merkel, A. W., Harder, J. W., Marsh, D. R., Smith, A. K., Fontenla, J. M., & Woods, T. N. (2011). The impact of solar spectral irradiance variability on middle atmospheric ozone. Geophysical Research Letters, 38(13). https://doi.org/10.1029/2011GL047561
  25. Vigouroux, C., Blumenstock, T., Coffey, M., Errera, Q., García, O., Jones, N. B., ... &Mellqvist, J. (2015). Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmospheric Chemistry and Physics, 15(6), 2915-2933. https://doi.org/10.5194/acp-15-2915-2015
  26. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  27. Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144-156. https://doi.org/10.1016/j.jmsy.2018.01.003
  28. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
  29. Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25). San Francisco, CA, USA: Determination press.
  30. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., & Ng, A. Y. (2011). Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 689-696).
  31. Paugam-Moisy, H. (2006). Spiking neuron networks a survey (No. REP_WORK). IDIAP.
  32. Bertsekas, D. P. (2011). Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. Optimization for Machine Learning, 2010(1-38), 3.
  33. Griesse, R., & Walther, A. (2004). Evaluating gradients in optimal control: continuous adjoints versus automatic differentiation. Journal of optimization theory and applications, 122(1), 63-86. https://doi.org/10.1023/B:JOTA.0000041731.71309.f1
  34. Wu, A. G., Dong, R. Q., & Fu, F. Z. (2015). Weighted stochastic gradient identification algorithms for ARX models. IFAC-PapersOnLine, 48(28), 1076-1081. https://doi.org/10.1016/j.ifacol.2015.12.274
  35. Hofmann, T., Lucchi, A., Lacoste-Julien, S., & McWilliams, B. (2015). Variance reduced stochastic gradient descent with neighbors. In Advances in Neural Information Processing Systems (pp. 2305-2313).
  36. Mesejo, P., Ibánez, O., Fernández-Blanco, E., Cedrón, F., Pazos, A., & Porto-Pazos, A. B. (2015). Artificial neuron-glia networks learning approach based on cooperative coevolution. International journal of neural systems, 25(04), 1550012. https://doi.org/10.1142/S0129065715500124
  37. Peng, H. K., Lee, H. C., Pan, J. Y., &Marculescu, R. (2016). Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization. PloS one, 11(1), e0146490. https://doi.org/10.1371/journal.pone.0146490
  38. O'Hagan, S., & Kell, D. B. (2015). Software review: the KNIME workflow environment and its applications in Genetic Programming and machine learning. Genetic Programming and Evolvable Machines, 16(3), 387-391. https://doi.org/10.1007/s10710-015-9247-3
  39. Jagla, B., Wiswedel, B., & Coppée, J. Y. (2011). Extending KNIME for next-generation sequencing data analysis. Bioinformatics, 27(20), 2907-2909. https://doi.org/10.1093/bioinformatics/btr478
  40. Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., & Wiswedel, B. (2009). KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter, 11(1), 26-31. https://doi.org/10.1145/1656274.1656280
  41. Feulner, G., Rahmstorf, S., Levermann, A., &Volkwardt, S. (2013). On the origin of the surface air temperature difference between the hemispheres in Earth's present-day climate. Journal of climate, 26(18), 7136-7150. https://doi.org/10.1175/JCLI-D-12-00636.1