Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 9 (2022)

Magneto-Structural Transition and Refrigeration Property in All-D-Metal Heusler Alloys: A Critical Review

DOI
https://doi.org/10.31875/2410-2199.2022.09.6
Published
2022-10-24

Abstract

Abstract: All-d-metal Heusler alloys has attracted much attention due to its unique magnetic properties, martensite transformation behavior and related solid-state refrigeration performance. These unique type alloys are recently discovered in 2015 and have been widely studied; however, systematic reviews on their magneto-structural transition and refrigeration property are rare. In this review, we first summarize the preparation techniques and microstructure of the bulk alloys and ribbons. Then the magnetic transition and martensite transformation behavior are reviewed, focusing on the correlation between magneto-structural transition and refrigeration properties. The effects of element doping, external magnetic and mechanical fields on the martensite transformation and corresponding magnetic entropy change are summarized. We end this review by proposing the further development prospective in the field of all-d-metal Heusler alloys.

References

  1. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation, Nature 439(7079) (2006) 957-960. https://doi.org/10.1038/nature04493
  2. I. Suorsa, J. Tellinen, K. Ullakko, E. Pagounis, Voltage generation induced by mechanical straining in magnetic shape memory materials, Journal of Applied Physics 95(12) (2004) 8054-8058. https://doi.org/10.1063/1.1711181
  3. I. Karaman, B. Basaran, H.E. Karaca, A.I. Karsilayan, Y.I. Chumlyakov, Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy, Applied Physics Letters 90(17) (2007) 172505. https://doi.org/10.1063/1.2721143
  4. V. Srivastava, Y.T. Song, K. Bhatti, R.D. James, The direct conversion of heat to electricity using multiferroic alloys, Advanced Energy Materials 1(1) (2011) 97-104. https://doi.org/10.1002/aenm.201000048
  5. L. Pfeuffer, J. Lemke, N. Shayanfar, S. Riegg, D. Koch, A. Taubel, F. Scheibel, N.A. Kani, E. Adabifiroozjaei, L. Molina-Luna, K.P. Skokov, O. Gutfleisch, Microstructure engineering of metamagnetic Ni-Mn-based Heusler compounds by Fe-doping: A roadmap towards excellent cyclic stability combined with large elastocaloric and magnetocaloric effects, Acta Materialia 221 (2021) 117390. https://doi.org/10.1016/j.actamat.2021.117390
  6. M.T. Khan, Y. Wang, C. Wang, X.Q. Liao, S. Yang, X.P. Song, X.B. Ren, Combination of conventional elastocaloric and magnetocaloric effects in a Co37Ni35Al28 ferromagnetic shape memory alloy, Scripta Materialia 146 (2018) 182-186. https://doi.org/10.1016/j.scriptamat.2017.11.041
  7. L. Mañosa, A. Planes, Materials with Giant Mechanocaloric Effects: Cooling by Strength, Advanced Materials 29(11) (2017) 1603607. https://doi.org/10.1002/adma.201603607
  8. Y.H. Qu, D.Y. Cong, X.M. Sun, Z.H. Nie, W.Y. Gui, R.G. Li, Y. Ren, Y.D. Wang, Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-Mn-Sn magnetic shape memory alloys, Acta Materialia 134 (2017) 236-248. https://doi.org/10.1016/j.actamat.2017.06.010
  9. S.B. Sun, H.X. Qin, L.J. Kong, R. Ning, Y.D. Zhao, Z.Y. Gao, W. Cai, Defect engineering: electron-exchange integral manipulation to generate a large magnetocaloric effect in Ni41Mn43Co6Sn10 alloys, ACS Applied Materials & Interfaces 13 (48) (2021) 57372-57379. https://doi.org/10.1021/acsami.1c18587
  10. D. Li, Z.B. Li, X.L. Zhang, C. Liu, G.Y. Zhang, J.J. Yang, B. Yang, H.L. Yan, D.Y. Cong, X. Zhao, L. Zuo, Giant elastocaloric effect in Ni-Mn-Ga-based alloys boosted by a large lattice volume change upon the martensitic transformation, ACS Applied Materials & Interfaces 14 (1) (2022) 1505-1518. https://doi.org/10.1021/acsami.1c22235
  11. Y. Li, W. Sun, D.W. Zhao, H. Xu, J. Liu, An 8 K elastocaloric temperature change induced by 1.3% transformation strain in Ni44Mn45-xSn11Cux alloys, Scripta Materialia 130 (2017) 278-282. https://doi.org/10.1016/j.scriptamat.2016.12.014
  12. A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, W.X. Xiong, D.Y. Cong, C. Popescu, L. Mañosa, Giant barocaloric effect in all-d-metal Heusler shape memory alloys, Physical Review Materials 3(4) (2019) 044406. https://doi.org/10.1103/PhysRevMaterials.3.044406
  13. M.Q. Yu, G.W. Li, C.G. Fu, E.K. Liu, K. Manna, E. Budiyanto, Q. Yang, C. Felser, H. Tuysuz, Tunable eg orbital occupancy in Heusler compounds for oxygen evolution reaction, Angewandte Chemie International Edition 60(11) (2021) 5800-5805. https://doi.org/10.1002/anie.202013610
  14. T. Kojima, S. Kameoka, A. P. Tsai, The emergence of Heusler alloy catalysts, Science and Technology of Advanced Materials 20(1) (2019) 445-455. https://doi.org/10.1080/14686996.2019.1598238
  15. Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, U. Mizutani, Semiconductorlike behavior of electrical resistivity in Heusler-type Fe2VAl, Physical Review Letters 79 (1997) 1909-1912. https://doi.org/10.1103/PhysRevLett.79.1909
  16. D. Sprungmann, K. Westerholt, H. Zabel, M. Weides, H. Kohlstedt, Evidence for triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl, Physical Review B 82(6) (2010) 060505. https://doi.org/10.1103/PhysRevB.82.060505
  17. T. Mizuno, Y. Tsuchiya, T. Machita, S. Hara, D. Miyauchi, K. Shimazawa, T. Chou, K. Noguchi, K. Tagami, Transport and magnetic properties of CPP-GMR sensor with CoMnSi Heusler alloy, IEEE Transactions on Magnetics 44(11) (2008) 3584-3587. https://doi.org/10.1109/TMAG.2008.2001655
  18. P. Khunkitti, A. Siritaratiwat, K. Pituso, Free layer thickness dependence of the stability in Co2(Mn0.6Fe0.4)Ge Heusler based CPP-GMR read sensor for areal density of 1 Tb/In(2), Micromachines (Basel) 12(9) (2021) 1010. https://doi.org/10.3390/mi12091010
  19. S.Y. Yu, Z.H. Liu, G.D. Liu, J.L. Chen, Z.X. Cao, G.H. Wu, B. Zhang, X.X. Zhang, Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x=14-16) upon martensitic transformation, Applied Physics Letters 89(16) (2006) 162503. https://doi.org/10.1063/1.2362581
  20. K. Ullakko, J.K. Huang, C. Kantner, R.C. O'Handley, V.V. Kokorin, Large magnetic‐field‐induced strains in Ni2MnGa single crystals, Applied Physics Letters 69(13) (1996) 1966-1968. https://doi.org/10.1063/1.117637
  21. T. Graf, C. Felser, S.S.P. Parkin, Simple rules for the understanding of Heusler compounds, Progress in Solid State Chemistry 39(1) (2011) 1-50. https://doi.org/10.1016/j.progsolidstchem.2011.02.001
  22. U. Adem, I. Dincer, S. Aktürk, M. Acet, Y. Elerman, Phase formation characteristics and magnetic properties of bulk Ni2MnGe Heusler alloy, Journal of Alloys and Compounds 618 (2015) 115-119. https://doi.org/10.1016/j.jallcom.2014.08.149
  23. Y. Chieda, T. Kanomata, K. Fukushima, K. Matsubayashi, Y. Uwatoko, R. Kainuma, K. Oikawa, K. Ishida, K. Obara, T. Shishido, Magnetic properties of Mn-rich Ni2MnSn Heusler alloys under pressure, Journal of Alloys and Compounds 486(1-2) (2009) 51-54. https://doi.org/10.1016/j.jallcom.2009.06.206
  24. C.D. Gelatt, A.R. Williams, V.L. Moruzzi, Theory of bonding of transition metals to nontransition metals, Physical Review B 27(4) (1983) 2005-2013. https://doi.org/10.1103/PhysRevB.27.2005
  25. T. Cao, H.C. Xuan, S.L. Liu, L.B. Wang, Z.G. Xie, X.H. Liang, F.H. Chen, P.D. Han, D.H. Wang, Y.W. Du, Enhanced elastocaloric effect and mechanical properties of Fe-doped Ni-Mn-Al ferromagnetic shape memory alloys, Intermetallics 112 (2019) 106529. https://doi.org/10.1016/j.intermet.2019.106529
  26. J.M. Wang, C.B. Jiang, A single-phase wide-hysteresis shape memory alloy Ni50Mn25Ga17Cu8, Scripta Materialia 62(5) (2010) 298-300. https://doi.org/10.1016/j.scriptamat.2009.11.023
  27. A.A. Cherechukin, I.E. Dikshtein, D.I. Ermakov, A.V. Glebov, V.V. Koledov, D.A. Kosolapov, V.G. Shavrov, A.A. Tulaikova, E.P. Krasnoperov, T. Takagi, Shape memory effect due to magnetic field-induced thermoelastic martensitic transformation in polycrystalline Ni-Mn-Fe-Ga alloy, Physics Letters A 291 (2001) 175-183. https://doi.org/10.1016/S0375-9601(01)00688-0
  28. Y.Q. Ma, S.Y. Yang, Y. Liu, X.J. Liu, The ductility and shape-memory properties of Ni-Mn-Co-Ga high-temperature shape-memory alloys, Acta Materialia 57(11) (2009) 3232-3241. https://doi.org/10.1016/j.actamat.2009.03.025
  29. N.V. Nong, L.T. Tai, N.T. Huy, N.T. Trung, C.R.H. Bahl, R. Venkatesh, F.W. Poulsen, N. Pryds, Structural, magnetic and magnetocaloric properties of Heusler alloys Ni50Mn38Sb12 with boron addition, Materials Science and Engineering: B 176(16) (2011) 1322-1325. https://doi.org/10.1016/j.mseb.2011.07.013
  30. Z. Yang, D.Y. Cong, X.M. Sun, Z.H. Nie, Y.D. Wang, Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys, Acta Materialia 127 (2017) 33-42. https://doi.org/10.1016/j.actamat.2017.01.025
  31. K. Tsuchiya, A. Tsutsumi, H. Ohtsuka, M. Umemoto, Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements, Materials Science and Engineering: A 378(1-2) (2004) 370-376. https://doi.org/10.1016/j.msea.2003.11.076
  32. G.F. Dong, H.J. Zhang, X.L. Zhang, H.B. Wang, J.H. Sui, W. Cai, Microstructure and mechanical properties in Ni45.4Mn39.5In13.1Gd2 alloy with high transformation temperature, Materials Science and Technology 28(11) (2014) 1332-1336. https://doi.org/10.1179/1743284712Y.0000000070
  33. W. Cai, L. Gao, A.L. Liu, J.H. Sui, Z.Y. Gao, Martensitic transformation and mechanical properties of Ni-Mn-Ga-Y ferromagnetic shape memory alloys, Scripta Materialia 57(7) (2007) 659-662. https://doi.org/10.1016/j.scriptamat.2007.05.041
  34. X.H. Tian, K. Zhang, C.L. Tan, E.J. Guo, Influence of Doping Tb on the Mechanical Properties and Martensitic Transformation of Ni-Mn-Sn Magnetic Shape Memory Alloys, Crystals 8(6) (2018) 247. https://doi.org/10.3390/cryst8060247
  35. Y.J. Huang, Q.D. Hu, N.M. Bruno, J.-H. Chen, I. Karaman, J.H. Ross, J.G. Li, Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy, Scripta Materialia 105 (2015) 42-45. https://doi.org/10.1016/j.scriptamat.2015.04.024
  36. D.W. Zhao, J. Liu, X. Chen, W. Sun, Y. Li, M.X. Zhang, Y.Y. Shao, H. Zhang, A.R. Yan, Giant caloric effect of low-hysteresis metamagnetic shape memory alloys with exceptional cyclic functionality, Acta Materialia 133 (2017) 217-223. https://doi.org/10.1016/j.actamat.2017.05.020
  37. Y.J. Huang, Q.D. Hu, J. Liu, L. Zeng, D.F. Zhang, J.G. Li, Banded-like morphology and martensitic transformation of dual-phase Ni-Mn-In magnetic shape memory alloy with enhanced ductility, Acta Materialia 61(15) (2013) 5702-5712. https://doi.org/10.1016/j.actamat.2013.06.012
  38. Y. Zhang, M. Li, Y.D. Wang, J.P. Lin, K.A. Dahmen, Z.L. Wang, P.K. Liaw, Superelasticity and Serration Behavior in Small-Sized NiMnGa Alloys, Advanced Engineering Materials 16(8) (2014) 955-960. https://doi.org/10.1002/adem.201300518
  39. D.C. Dunand, P. Müllner, Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys, Advanced Materials 23(2) (2011) 216-32. https://doi.org/10.1002/adma.201002753
  40. Y. Feng, H. Chen, L. Gao, H.B. Wang, X.H. Bian, M.J. Gong, Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni45Mn36.6In13.4Co5 ribbon, Materials Characterization 122 (2016) 170-176. https://doi.org/10.1016/j.matchar.2016.10.030
  41. Z.Y. Wei, E.K. Liu, J.H. Chen, Y. Li, G.D. Liu, H.Z. Luo, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases, Applied Physics Letters 107(2) (2015) 022406. https://doi.org/10.1063/1.4927058
  42. A. Taubel, B. Beckmann, L. Pfeuffer, N. Fortunato, F. Scheibel, S. Ener, T. Gottschall, K.P. Skokov, H.B. Zhang, O. Gutfleisch, Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: a combined experimental and theoretical study, Acta Materialia 201 (2020) 425-434. https://doi.org/10.1016/j.actamat.2020.10.013
  43. Z.Y. Wei, E.K. Liu, Y. Li, X.L. Han, Z.W. Du, H.Z. Luo, G.D. Liu, X.K. Xi, H.W. Zhang, W.H. Wang, G.H. Wu, Magnetostructural martensitic transformations with large volume changes and magneto-strains in all-d-metal Heusler alloys, Applied Physics Letters 109(7) (2016) 071904. https://doi.org/10.1063/1.4961382
  44. H.L. Yan, L.D. Wang, H.X. Liu, X.M. Huang, N. Jia, Z.B. Li, B. Yang, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies, Materials & Design 184 (2019) 108180. https://doi.org/10.1016/j.matdes.2019.108180
  45. Y. Liu, A.D. Xiao, T.Z. Yang, Z.T. Xu, X.L. Zhou, T.Y. Ma, Enhancing reversible entropy change of all-d-metal Ni37.5Co12.5Mn35Ti15 alloy by multiple external fields, Scripta Materialia 207 (2022) 114303. https://doi.org/10.1016/j.scriptamat.2021.114303
  46. D.Y. Cong, W.X. Xiong, A. Planes, Y. Ren, L. Manosa, P.Y. Cao, Z.H. Nie, X.M. Sun, Z. Yang, X.F. Hong, Y.D. Wang, Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys, Physical review letters 122(25) (2019) 255703. https://doi.org/10.1103/PhysRevLett.122.255703
  47. S.Y. Huang, L. Qin, Y. Li, L.W. Li, The study of martensitic transformation and magnetocaloric effect in rare earth Y-doped all-d-metal Ni-Co-Mn-Ti Heusler alloys, Materials Letters 302 (2021) 130376. https://doi.org/10.1016/j.matlet.2021.130376
  48. K. Liu, S.C. Ma, C.C. Ma, X.Q. Han, K. Yu, S. Yang, Z.S. Zhang, Y. Song, X.H. Luo, C.C. Chen, S.U. Rehman, Z.C. Zhong, Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons, Journal of Alloys and Compounds 790 (2019) 78-92. https://doi.org/10.1016/j.jallcom.2019.03.173
  49. K. Liu, X.Q. Han, K. Yu, C.C. Ma, Z.S. Zhang, Y. Song, S.C. Ma, H. Zeng, C.C. Chen, X.H. Luo, S.U. Rehman, Z.C. Zhong, Magnetic-field-induced metamagnetic reverse martensitic transformation and magnetocaloric effect in all-d-metal Ni36.0Co14.0Mn35.7Ti14.3 alloy ribbons, Intermetallics 110 (2019) 106472. https://doi.org/10.1016/j.intermet.2019.106472
  50. H. Neves Bez, A.K. Pathak, A. Biswas, N. Zarkevich, V. Balema, Y. Mudryk, D.D. Johnson, V.K. Pecharsky, Giant enhancement of the magnetocaloric response in Ni-Co-Mn-Ti by rapid solidification, Acta Materialia 173 (2019) 225-230. https://doi.org/10.1016/j.actamat.2019.05.004
  51. Y. Li, S.Y. Huang, W.H. Wang, E.K. Liu, L.W. Li, Ferromagnetic martensitic transformation and large magnetocaloric effect in Ni35Co15−xFexMn35Ti15 (x = 2, 4, 6, 8) alloys, Journal of Applied Physics 127 (2020) 233907. https://doi.org/10.1063/5.0001403
  52. Y. Li, L. Qin, S.Y. Huang, L.W. Li, Enhanced magnetocaloric performances and tunable martensitic transformation in Ni35Co15Mn35−xFexTi15 all-d-metal Heusler alloys by chemical and physical pressures, Science China Materials 65 (2022) 486-493. https://doi.org/10.1007/s40843-021-1747-3
  53. Q.Q. Zeng, J.L. Shen, H.N. Zhang, J. Chen, B. Ding, X.K. Xi, E.K. Liu, W.H. Wang, G.H. Wu, Electronic behaviors during martensitic transformations in all-d-metal Heusler alloys, Journal of Physics: Condensed Matter 31(42) (2019) 425401. https://doi.org/10.1088/1361-648X/ab2bd8
  54. K. Liu, S.C. Ma, Z.S. Zhang, X.W. Zhao, B. Yang, D.H. Wang, S. Ur Rehman, Z.C. Zhong, Giant exchange bias effect in all-3d-metal Ni38.8Co2.9Mn37.9Ti20.4 thin film, Applied Physics Letters 116(2) (2020) 022412. https://doi.org/10.1063/1.5129878
  55. K. Yu, K. Liu, S.C. Ma, X.Q. Han, Z.S. Zhang, Y. Song, Y.X. Zhang, C.C. Chen, X.H. Luo, Z.C. Zhong, Dependence of microstructure and magnetism on deposition temperature in Ni-Co-Mn-Ti all-d Heusler alloy thin films, Journal of Magnetism and Magnetic Materials 484 (2019) 31-36. https://doi.org/10.1016/j.jmmm.2019.03.119
  56. V.G. de Paula, L.S. de Oliveira, A.A. Mendes Filho, C.T. Rios, J.A. Souza, Thermal annealing influence on structural, magnetic, electronic, and mechanical properties of off-stoichiometric Ni40Cu10Mn35Ti15 all-d-metal Heusler alloy, Journal of Materials Research 35(21) (2020) 3004-3011. https://doi.org/10.1557/jmr.2020.217
  57. Z.Y. Wei, W. Sun, Q. Shen, Y. Shen, Y.F. Zhang, E.K. Liu, J. Liu, Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography.pdf, Applied Physics Letters 114 (2019) 101903. https://doi.org/10.1063/1.5077076
  58. S.L. Liu, H.C. Xuan, T. Cao, L.B. Wang, Z.G. Xie, X.H. Liang, H. Li, L. Feng, F.H. Chen, P.D. Han, Magnetocaloric and elastocaloric effects in all‐d‐Metal Ni37Co9Fe4Mn35Ti15 magnetic shape memory alloy, Physica Status Solidi (a) 216(23) (2019) 1900563. https://doi.org/10.1002/pssa.201900563
  59. Y.H. Qu, D.Y. Cong, S.H. Li, W.Y. Gui, Z.H. Nie, M.H. Zhang, Y. Ren, Y.D. Wang, Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy, Acta Materialia 151 (2018) 41-55. https://doi.org/10.1016/j.actamat.2018.03.031
  60. Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu, Orientation dependent elastocaloric effect in directionally solidified Ni-Mn-Sn alloys, Scripta Materialia 163 (2019) 14-18. https://doi.org/10.1016/j.scriptamat.2018.12.026
  61. W. Sun, J. Liu, D.W. Zhao, M.X. Zhang, Directional solidification and elastocaloric effect in a Ni45Mn44Sn11 magnetic shape memory alloy, Journal of Physics D: Applied Physics 50(44) (2017) 444001. https://doi.org/10.1088/1361-6463/aa87ef
  62. A. Shen, W. Sun, D.W. Zhao, J. Liu, Influence of Cr on microstructure and elastocaloric effect in Ni-Mn-In-Co-Cr polycrystalline alloys, Physics Letters A 382 (2018) 2876-2879. https://doi.org/10.1016/j.physleta.2018.06.022
  63. S. Hattori, R. Ishikura, Q.L. Zhang, Construction of database on cavitation erosion and analyses of carbon steel data, Wear 257(9-10) (2004) 1022-1029. https://doi.org/10.1016/j.wear.2004.07.002
  64. R.S. Xing, D.J. Yu, G.F. Xie, Z.H. Yang, X.X. Wang, X. Chen, Effect of thermal aging on mechanical properties of a Bainitic forging steel for reactor pressure vessel, Materials Science and Engineering: A 720 (2018) 169-175. https://doi.org/10.1016/j.msea.2018.02.036
  65. A. Lara-Guevara, I. Rojas-Rodríguez, C.J. Ortiz-Echeverri, M. Robles-Agudo, M.E. Rodríguez-García, Thermal, structural, and microstructural characterization of eutectoid steel at different heat treatments, Journal of Materials Research 32(11) (2017) 2202-2209. https://doi.org/10.1557/jmr.2017.47
  66. Y. Shen, Z.Y. Wei, W. Sun, Y.F. Zhang, E.K. Liu, J. Liu, Large elastocaloric effect in directionally solidified all-d-metal Heusler metamagnetic shape memory alloys, Acta Materialia 188 (2020) 677-685. https://doi.org/10.1016/j.actamat.2020.02.045
  67. Z.Y. Wei, Y. Shen, Z. Zhang, J.P. Guo, B. Li, E.K. Liu, Z.D. Zhang, J. Liu, Low-pressure-induced giant barocaloric effect in an all-d-metal Heusler Ni35.5Co14.5Mn35Ti15 magnetic shape memory alloy, APL Materials 8(5) (2020) 051101. https://doi.org/10.1063/5.0005021
  68. L. Mañosa, A. Planes, M. Acet, Advanced materials for solid-state refrigeration, Journal of Materials Chemistry A 1(16) (2013) 4925. https://doi.org/10.1039/c3ta01289a
  69. Y.Y. Gong, D.H. Wang, Q.Q. Cao, E.K. Liu, J. Liu, Y.W. Du, Electric field control of the magnetocaloric effect, Advanced materials 27(5) (2015) 801-5. https://doi.org/10.1002/adma.201404725
  70. L. Jian, Tino Gottschall, Konstantin P Skokov, James D Moore, Oliver Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nature materials 11(7) (2012) 620-6. https://doi.org/10.1038/nmat3334
  71. X.Y. Zhao, Y.X. Yan, J.H. Wen, Y. Li, L.W. Li, Enhancement of magnetocaloric effect in all-d-metal Heusler Mn52.6Ni30.5Co7.8Ti9.1/PVA/PET flexible composite by mechanical strains, Journal of Alloys and Compounds 897 (2022) 163116. https://doi.org/10.1016/j.jallcom.2021.163116