Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 7 (2020)

A Review Study on the Modeling and Simulation of Solar Tower Power Plants

DOI
https://doi.org/10.31875/2410-2199.2020.07.9
Published
2020-01-20

Abstract

Much attention has been paid to concentrating solar power technologies (CSP) in the last two decades. Among the CSP that have been developed so far are the parabolic trough, the parabolic dish, the Fresnel collectors and the solar tower. However, the most widely used of these technologies is the solar tower power plant (STPP). This review aims to summarize the state-of-the-art modeling approaches used to simulate the performances and the reliability of the STPP. The review includes the different analytical and numerical models used in literature to predict the thermal efficiency of these STPP. A general description and comparison of different CSP technologies are first provided. An overview of STPP technology, current status and a presentation of the major components including the heliostat field and the solar receiver are then highlighted. The different research works, developed on the modeling and simulation of the STPP performances and reliability, are also investigated in this review. In summary, this work presents a comprehensive review of the existing numerical and analytical models and could serve as a guideline to develop new models for future trends in solar tower power plants.

References

  1. Sözen Adnan, Menlik Tayfun, Ünvar Sinan. Determination of efficiency of flat-plate solar collectors using neural network approach. Expert Systems with Applications 35 (2008) 1533- 1539. https://doi.org/10.1016/j.eswa.2007.08.080
  2. Zhang M, Mu HL, Ning YD. "Accounting for energy related CO2 emission in China, 1991-2006". Energy Policy 2009; 37:767-73. https://doi.org/10.1016/j.enpol.2008.11.025
  3. Chen G.Q., Yang Q., Zhao Y.H., Wang Z.F. "Nonrenewable energy cost and greenhouse gas emissions of a 1.5 MW solar power tower plant in China", Renewable and Sustainable Energy Reviews 15 (2011) 1961-1967. https://doi.org/10.1016/j.rser.2010.12.014
  4. Imadojemu H. E., "concentrating parabolic collectors: a patent survey", Energy Conversion and Management Vol.36, No. 4, pp. 225-237, 1995. https://doi.org/10.1016/0196-8904(94)00058-8
  5. Hennecke, K; Dersch, J & Quaschning, V. Greenius - a simulation tool for renewable energy utilization. In: SolarPACES 2010 Conference, Perpignan, France (2010).
  6. Pedraza J. M. Solar Energy in Cuba: Current Situation and Future Development. Journal of Solar Energy Research Updates, 2019, 6, 1-14.
  7. Pedraza J. M. Solar Energy in Latin America and the Caribbean: The Current Situation and Perspectives in the Use of Solar Energy for Electricity Generation. Journal of Solar Energy Research Updates, 2020, 7, 17-41.
  8. Şen Z. Solar energy fundamentals and modeling techniques: atmosphere, environment, climate change and renewable energy. 2008 Springer-Verlag London Limited.
  9. Kalogirou SA. Solar Energy Engineering: Processes and Systems. 2nd edition, ISBN: 0123972701. Elsevier Inc, USA, 2014.
  10. Twidell J, Weir T, Renewable energy resources, Taylor & Francis, London and New York, 2006. https://doi.org/10.4324/9780203478721
  11. Boudries R. Analysis of solar hydrogen production in Algeria: Case of an electrolyzer-concentrating photovoltaic system, International journal of hydrogen energy 38 (2013) 11507 - 11518. https://doi.org/10.1016/j.ijhydene.2013.04.136
  12. Desideri Umberto, Elia Campana Pietro. Analysis and comparison between a concentrating solar and a photovoltaic power plant. Applied Energy 113 (2014) 422-433. https://doi.org/10.1016/j.apenergy.2013.07.046
  13. Soulayman S. and Hababa M. A. The Solar Panel's Performance Dependence on Incident Radiation Intensity and its Surface Temperature. Journal of Solar Energy Research Updates, 2017, 4, 9-17. https://doi.org/10.15377/2410-2199.2017.04.2
  14. Plourde B.D., Gikling A., Marsh T., Riemenschneider M.A., Fitzgerald J.L., Minkowycz W.J., Kiplagat J. and Abraham J.P. Design and Evaluation of a Concentrated Solar-Powered Thermal-Pasteurization System. Journal of Solar Energy Research Updates, 2019, 6, 34-42.
  15. Barlev D, Vidu R, Stroeve P. Innovation in concentrated solar power. Solar Energy Materials & Solar Cells 95(10): (2011) 2703-25. https://doi.org/10.1016/j.solmat.2011.05.020
  16. Rosen MA, Dincer I., "Exergy-cost-energy-mass analysis of thermal systems and processes". Energy Conversion and Management 2003; 4(10):1633-51. https://doi.org/10.1016/S0196-8904(02)00179-6
  17. Mondol J. D. and Jacob G. Commercial Scale Solar Power Generation (5MW to 50 MW) and its Connection to Distribution Power Network in the United Kingdom. Journal of Solar Energy Research Updates, 2018, 5, 25-38.
  18. Patel Mukund R., "Wind and Solar Power Systems" Merchant Marine Academy Kings Point, New York; CRC Press 1999.
  19. Kalogirou SA. Solar thermal collectors and applications, Progress in Energy and Combustion Science 30 (2004) 231- 295. https://doi.org/10.1016/j.pecs.2004.02.001
  20. Tyagi SK, Wang Shengwei, Singhal MK, Kaushik SC, Park SR. Exergy analysis and parametric study of concentrating type solar collectors. International Journal of Thermal Sciences 46 (2007) 1304-1310. https://doi.org/10.1016/j.ijthermalsci.2006.11.010
  21. Yao Z, Wang Z, Lu Z, Wei X. "Modeling and simulation of the pioneer 1MW solar thermal central receiver system in China", Renewable Energy 34 (2009) 2437-2446. https://doi.org/10.1016/j.renene.2009.02.022
  22. Xu C, Wang Z, Li X, Sun F. Energy and exergy analysis of solar power tower plants. Applied Thermal Engineering, 2011, 31, 3904-3913. https://doi.org/10.1016/j.applthermaleng.2011.07.038
  23. Xu E, Yu Q, Wang Z, Yang C. Modeling and simulation of 1 MW DAHAN solar thermal power tower plant. Renewable Energy, 2011, 36, 848-857. https://doi.org/10.1016/j.renene.2010.08.010
  24. Yu Q, Wang Z, Xu E. "Simulation and analysis of the central cavity receiver's performance of solar thermal power tower plant", Solar Energy 86 (2012a) 164-174. https://doi.org/10.1016/j.solener.2011.09.022
  25. McGovern Ronan K., Smith William J., "Optimal concentration and temperatures of solar thermal power plants", Energy Conversion and Management 60 (2012) 226- 232. https://doi.org/10.1016/j.enconman.2011.11.032
  26. Benammar S, Khellaf A, Mohammedi K. Contribution to the modeling and simulation of solar power tower plants using energy analysis. Energy Conversion and Management, 2014a, 78, 923-930. https://doi.org/10.1016/j.enconman.2013.08.066
  27. Ferriere A, Bonduelle B, Amouroux M. Development of an optimal control strategy for the thémis solar plant: Part 1 - Themis transient model. Transactions of the ASME 111, (1989) 298-304. https://doi.org/10.1115/1.3268326
  28. Yebra LJ, Berenguel M, Dormido S, Romero M. "Modeling and simulation of central receiver solar thermal power plants", In: Proceedings of the 44th IEEE Conference (2005), Spain.
  29. Buck Reiner, Barth Christian, Eck Markus, Steinmann WolfDieter. Dual receiver concept for solar towers. Solar Energy 2006;80: 1249-54. https://doi.org/10.1016/j.solener.2005.03.014
  30. Wei Xiudong, Lu Zhenwu, Wang Zhifeng, Yu Weixing, Zhang Hongxing, Yao Zhihao. A new method for the design of the heliostat field layout for solar tower power plant. Renewable Energy 2010; 35: 1970-1975. https://doi.org/10.1016/j.renene.2010.01.026
  31. Li, X; Kong, W; Wang, Z; Chang, C & Bai, F. Thermal model and thermodynamic performance of molten salt cavity receiver. Renewable Energy, 2010, 35, 981-988. https://doi.org/10.1016/j.renene.2009.11.017
  32. Yu Q, Wang Z, Xu E, Li X. Minghuan Guo, "Modeling and dynamic simulation of the collector and receiver system of 1MWe DAHAN solar thermal power tower plant", Renewable Energy 43 (2012b) 18-29. https://doi.org/10.1016/j.renene.2011.11.040
  33. Ben-Zvi R, Epstein M, Segal A. Simulation of an integrated steam generator for solar tower. Solar Energy 2012; 86: 578- 592. https://doi.org/10.1016/j.solener.2011.11.001
  34. Montes, MJ; Abánades, A & Martínez-Val, JM. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Solar Energy, 2009, 83, 679-689. https://doi.org/10.1016/j.solener.2008.10.015
  35. Sahoo Sudhansu S, Singh Suneet, Banerjee Rangan. Analysis of heat losses from a trapezoidal cavity used for Linear Fresnel Reflector system. Solar Energy 2012; 86: 1313-1322. https://doi.org/10.1016/j.solener.2012.01.023
  36. Matteson T D and Smith A M. Application of reliabilitycentered maintenance to solar central receiver plants. United States: N. p., 1986. Web. doi:10.2172/5258788. https://doi.org/10.2172/5258788
  37. Kolb G J. Reliability Analysis of a Salt-in-Tube Central Receiver Power Plant. Sandia National Laboratories report Albuquerque (1990), NM, pp. 19.
  38. Fork, D.K., Fitch, J., Ziaei, S., Jetter, R.I., 2012. Life estimation of pressurized-air solar-thermal receiver tubes. J. Solar Energy Eng. 134 (4), 041016. https://doi.org/10.1115/1.4007686
  39. Benammar S, Khellaf A, Mohammedi K. Solar tower power plants performance and reliability analysis. In: solar power, Editor: Stephen Bailey. Nova science publishers, Inc. ISBN: 978-1-63321-317-3. USA, 2014b.
  40. Setien E., Frasquet M., G. Saliou, M. Silva, G. Pinna, R. Blázquez, V. Ruiz. Reliability analysis of Solar-Gas Hybrid Receivers for central tower plants. Energy Procedia 69 (2015) 1558 - 1567. https://doi.org/10.1016/j.egypro.2015.03.108
  41. Conroy T., Collins M. N., Fisher J., Grimes R., (2018). Levelized cost of electricity evaluation of liquid sodium receiver designs through a thermal performance, mechanical reliability, and pressure drop analysis. Solar Energy 166, 472-485. https://doi.org/10.1016/j.solener.2018.03.003
  42. Benammar S and Khellaf A. Solar Tower Power Plant Reliability Analysis using FORM method. 3ème Conférence Internationale de Mécanique (ICM' 2017), Annaba 26-27 Avril 2017.
  43. Benammar S., Tee K F. Structural reliability analysis of a heliostat under wind load for concentrating solar power. Solar Energy 181 (2019) 43-52. https://doi.org/10.1016/j.solener.2019.01.085
  44. Benammar S, Tee K F. Failure probability analysis of heliostat systems. Int. J. Critical Infrastructures, Vol. 16, No. 4, 2020. https://doi.org/10.1504/IJCIS.2020.112037
  45. Romero-Alvarez Manuel, Zarza Eduardo. Concentrating solar thermal power. 2007 by Taylor & Francis Group, LLC.
  46. Ummadisingu A, Soni MS, Concentrating solar power - technology, potential and policy in India. Renewable and Sustainable Energy Reviews 15(9): (2011) 5169-75. https://doi.org/10.1016/j.rser.2011.07.040
  47. Alexopoulos S., Hoffschmidt Bernhard, "Solar tower power plant in Germany and future perspectives of the development of the technology in Greece and Cyprus", Renewable Energy 35 (2010) 1352-1356. https://doi.org/10.1016/j.renene.2009.11.003
  48. Pavlović Tomislav M., Radonjić Ivana S., Milosavljević Dragana D., Lana S. Pantić. A review of concentrating solar power plants in the world and their potential use in Serbia. Renewable and Sustainable Energy Reviews 16 (2012) 3891- 3902. https://doi.org/10.1016/j.rser.2012.03.042
  49. Zhang HL, Baeyens J, Degrève J, Cacères G. Concentrated solar power plants: Review and design methodology. Renewable and Sustainable Energy Reviews 22 (2013) 466- 481. https://doi.org/10.1016/j.rser.2013.01.032
  50. Blair N, Mehos M, Christensen C. Sensitivity of concentrating solar power trough performance, cost and financing with the Solar Advisor Model. NREL CD-550-42702, pp. 1-8 (2008).
  51. Cavallaro F. Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy 34(7): (2009) 1678-85. https://doi.org/10.1016/j.renene.2008.12.034
  52. Janjai S., Laksanaboonsong J., Seesaard T., Potential application of concentrating solar power systems for the generation of electricity in Thailand. Applied Energy 88 (2011) 4960-4967. https://doi.org/10.1016/j.apenergy.2011.06.044
  53. Becker M, Klimas PC. Second-Generation Central Receiver Technologies: A Status Report, eds. Muller CF, Karlsruhe, Germany (1993).
  54. Braun FG, Hooper E, Wand R, Zloczysti P. Holding a candle to innovation in concentrating solar power technologies: a study drawing on patent data. Energy Policy 39(5): (2011) 2441-56. https://doi.org/10.1016/j.enpol.2011.02.008
  55. Patel Mukund R. Wind and solar power systems: design, analysis, and operation. CRC Press Taylor & Francis Group, 2006. https://doi.org/10.1201/9781420039924
  56. Sharma A. A comprehensive study of solar power in India and World. Renewable and Sustainable Energy Reviews 15(4): (2011) 1767-76. https://doi.org/10.1016/j.rser.2010.12.017
  57. Zhu Guangdong, Wendelin Tim, Wagner Michael J., Kutscher Chuck. History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy, 103 (2014) 639- 652. https://doi.org/10.1016/j.solener.2013.05.021
  58. Răboacă M. S., Badea G., Enache A., Filote C., Răsoi G., Rata M., Lavric A. and Felseghi R-A. Concentrating Solar Power Technologies. Energies 2019, 12, 1048. https://doi.org/10.3390/en12061048
  59. Droher J.J., Squier S.E. Performance of the Vanguard Solar Dish-Stirling Engine Module, EPRI AP-4608, Electrical Power Research Institute, Palo Alto, CA (1986).
  60. Hijazi H., Mokhiamar O., Elsamni O. Mechanical design of a low cost parabolic solar dish concentrator. Alexandria Engineering Journal. Vol 55, Issue 1, March 2016, Pages 1- 11. https://doi.org/10.1016/j.aej.2016.01.028
  61. Smith DC, Chavez JM. A final report on the phase I testing of a molten-salt cavity receiver, Sandia National Laboratories, SAND 87-2290.
  62. Benammar S., (2015), Contribution to the Dependability of Hybrid Solar / Gas Tower Power Plants. PHD thesis, University M'Hemd Bougara-Boumerdes.
  63. Falcone PK. A Handbook for Solar Central Receiver Design, Sandia National Laboratories, Livermore, CA. December, 1986. Report SAND 86-8009. https://doi.org/10.2172/6545992
  64. Reddy R G. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation. Final Scientific/Technical Report. October 2013, United States Department of Energy. https://doi.org/10.2172/1111584
  65. Fernandez A. G., Galleguillos H., Fuentealba E., Perez F. J. Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim (2015) 122:3-9. DOI 10.1007/s10973-015-4715-9. https://doi.org/10.1007/s10973-015-4715-9
  66. Lippke, F. Simulation of the Part-Load Behavior of a 30 MWe SEGS Plant, SANDIA Report SAND95-1293 (1995). https://doi.org/10.2172/95571
  67. Smith DC, Chavez JM. A final report on the phase I testing of a molten-salt cavity receiver, Sandia National Laboratories, SAND 87-2290.
  68. Martin J, Vitko J. ASCUAS: a solar central receiver utilizing a solid thermal carrier, Sandia National Laboratories, SAND 82-8203; 1982. https://doi.org/10.2172/5663779
  69. Falcone PK, Noring J, Hruby J. Assessment of a solid particle receiver for a high temperature solar central receiver system. Livermore, CA: Sandia National Laboratories; 1985 (SAND 85-8208). https://doi.org/10.2172/6023191
  70. Tan Taide, Chen Yitung. Review of study on solid particle solar receivers. Renewable and Sustainable Energy Reviews 14 (2010) 265-276. https://doi.org/10.1016/j.rser.2009.05.012
  71. Benoit H., Pe'rez Lo'pez I., Gauthier D., Sans J.-L., Flamant G., On-sun demonstration of a 750 °C heat transfer fluid for concentrating solar systems: Dense particle suspension in tube. Solar Energy 118 (2015) 622-633. https://doi.org/10.1016/j.solener.2015.06.007
  72. Fuliang Niea, Zhiying Cuia, Fengwu Baia, Zhifeng Wang. Properties of solid particles as heat transfer fluid in a gravity driven moving bed solar receiver. Solar Energy Materials and Solar Cells 200 (2019) 110007. https://doi.org/10.1016/j.solmat.2019.110007
  73. Ho Clifford K., Carlson Matthew, Albrecht Kevin J., Ma Zhiwen, Jeter Sheldon, Nguyen Clayton M. Evaluation of Alternative Designs for a High Temperature Particle-to-sCO2 Heat Exchanger. Journal of Solar Energy Engineering Vol. 141 (2019). https://doi.org/10.1115/ES2018-7504
  74. Ho Clifford K. Advances in central receivers for concentrating solar applications. Solar Energy. Volume 152 (2017) 38-56. https://doi.org/10.1016/j.solener.2017.03.048
  75. Daniel C. Miller, Christopher J. Pfutzner, Gregory S. Jackson. Heat transfer in counterflow fluidized bed of oxide particles for thermal energy storage. International Journal of Heat and Mass Transfer 126 (2018) 730-745. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.165
  76. Zhang S. and Wang Z., Experimental and Numerical Investigations on the Fluidized Heat Absorption inside Quartz Glass and Metal Tubes. Energies 2019, 12, 806; https://doi.org/10.3390/en12050806
  77. Ho Clifford K., Iverson Brian D. Review of high-temperature central receiver designs for concentrating solar power. Renewable and Sustainable Energy Reviews 29 (2014) 835- 846. https://doi.org/10.1016/j.rser.2013.08.099
  78. Ávila-Marín A. L., Volumetric receivers in solar thermal power plants with central receiver system technology: A review. Solar Energy 85 (2011) 891-910. https://doi.org/10.1016/j.solener.2011.02.002
  79. Sharma P., Chandra L., Ghoshdastidar P.S., Shekhar R. A novel approach for modelling fluid flow and heat transfer in an open volumetric air receiver using ANSYS-FLUENTP. Solar energy 204 (2020) 246-255. https://doi.org/10.1016/j.solener.2020.04.031
  80. Singh G., Luque S., González-Aguilar J., Romero M., Chandra L., Open Volumetric Air Receiver: Current Status, Challenges and Innovative Solutions. Encyclopedia of Renewable and Sustainable Materials. Volume 1, 2020, Pages 586-599. https://doi.org/10.1016/B978-0-12-803581-8.11263-9
  81. Miller F., Koenigsdorff R., Thermal modeling of a smallparticle solar central receiver. Journal of Solar Energy Engineering-Transactions of the ASME 2000; 122 (1):23-9. https://doi.org/10.1115/1.556277
  82. Jin Y, Fang J, Wei Jinjia, Wang X., A comprehensive model of a cavity receiver to achieve uniform heat flux using air-carbon particles mixture. Applied Energy Volume 220 (2018) 616- 628. https://doi.org/10.1016/j.apenergy.2018.03.142
  83. Ophoff C., Ozalp N., Moens D., A numerical study on particle tracking and heat transfer enhancement in a solar cavity receiver. Applied Thermal Engineering Volume 180 (2020) 115785. https://doi.org/10.1016/j.applthermaleng.2020.115785
  84. Heller P, Pfander M, Denk T, Tellez F, Valverde A, Fernandez J, et al. Test and evaluation of a solar powered gas turbine system. Solar Energy 2006; 80 (10):1225-1230. https://doi.org/10.1016/j.solener.2005.04.020
  85. Chu Shunzhou, Bai Fengwu, Zhang Xiliang, Yang Bei, Cui Zhiying, Nie Fuliang . Experimental study and thermal analysis of a tubular pressurized air receiver. Renewable Energy Volume 125, (2018) 413-424. https://doi.org/10.1016/j.renene.2018.02.125
  86. Conroy T., Collins M. N., Grimes R., A review of steady-state thermal and mechanical modelling on tubular solar receivers. Renewable and Sustainable Energy Reviews 119 (2020) 109591. https://doi.org/10.1016/j.rser.2019.109591
  87. Jorgensen G., Schissel P., Burrows R., Optical properties of high-temperature materials for direct absorption receivers. Solar Energy Materials 1986; 14 (3):385-94. https://doi.org/10.1016/0165-1633(86)90061-4
  88. Bohn M. S., Green H. J., Heat transfer in molten salt direct absorption receivers Solar Energy, Volume 42, Issue 1, 1989, Pages 57-66. https://doi.org/10.1016/0038-092X(89)90130-8
  89. Zhou Y., Yu J., Gao M., An experimental study of falling film evaporation in vertical channels with perforated fins of a plate-fin heat exchanger. Chemical Engineering and Processing - Process Intensification. Volume 145 (2019) 107672. https://doi.org/10.1016/j.cep.2019.107672
  90. Tracey T. Potential of modular internal film receivers in molten salt central receiver solar power systems. In: ASME international solar energy conference, Maui, HI; April 5-9, 1992.
  91. Tyner C. E., Sutherland J. P., Gould W. R. Solar Two: A Molten Salt Power Tower Demonstration. SAND 95 - 1828 C. 1995, USA.
  92. Zheng M., Zapata J., Asselineau C-A., Coventry J., Pye J., Analysis of tubular receivers for concentrating solar tower systems with a range of working fluids, in exergy-optimised flow-path configurations. Solar Energy, Volume 211(2020) 999-1016. https://doi.org/10.1016/j.solener.2020.09.037
  93. Robert W. Bradshaw, Daniel B. Dawson, Wilfredo De la Rosa, Rockwell Gilbert, Steven H. Goods et al. Final Test and Evaluation Results from the Solar Two Project. James E. Pacheco, Editor, Sandia National Laboratories (SAND 2002- 0120). https://doi.org/10.2172/793226
  94. Loni R., Kasaeian A.B., Mahian O., Sahin A.Z., Thermodynamic analysis of an organic Rankine cycle using a tubular solar cavity receiver. Energy Conversion and Management. Vol. 127, (2016) 494-503. https://doi.org/10.1016/j.enconman.2016.09.007
  95. Rodríguez-Sáncheza M.R., Sánchez-González A., MarugánCruz C., Santana D., New designs of molten-salt tubularreceiver for solar power tower. Energy Procedia 49 (2014) 504 - 513. https://doi.org/10.1016/j.egypro.2014.03.054
  96. Ho C. K. and Iverson B. D. Review of Central Receiver Designs for High-Temperature Power Cycles. SolarPACES 2012, Marrakech, Morocco, September 11-14, 2012.
  97. Siebers DL, Kraabel JS. Estimating convective energy losses from solar central receivers. Sandia National Laboratories, Livermore, CA. 1984. SAND 84-8717. https://doi.org/10.2172/6906848
  98. Lu J and Ding J. Heat Transfer Performances and Exergetic Optimization for Solar Heat Receiver, Evaporation, Condensation and Heat transfer, Dr. Amimul Ahsan (Ed.), ISBN: 978-953-307-583-9, InTech (2011). https://doi.org/10.5772/20135
  99. Clausing AM. An analysis of convective losses from cavity solar central receiver. Solar Energy 27 (1981), 295-300. https://doi.org/10.1016/0038-092X(81)90062-1
  100. Clausing AM. Convective losses from cavity solar receivers - comparisons between analytical predictions and experimental results. Journal of Solar Energy Engineering 105, (1983) 29-33. https://doi.org/10.1115/1.3266342
  101. Behnia M, Reizes JA, De Vahl Davis G. Combined radiation and natural convection natural-convection in a rectangular cavity with a transparent wall and containing a nonparticipating fluid. International Journal for Numerical Methods in Fluids, 1990, 10 (3), 305-325. https://doi.org/10.1002/fld.1650100306
  102. Taumoefolau T, Paitoonsurikarn S, Hughes G, Lovegrove K. Experimental investigation of natural convection heat loss from a model solar concentrator cavity receiver. Journal of Solar Energy Engineering, 2004. 126 (2), 801-807. https://doi.org/10.1115/1.1687403
  103. Sendhil Kumara, N., Reddy, K.S., 2007. Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator. Solar Energy 81 (7), 846-855. https://doi.org/10.1016/j.solener.2006.11.008
  104. Prakash, M., Kedare, S.B., Nayak, J.K., 2009. Investigations on heat losses from a solar cavity receiver. Solar Energy 83, 157-170. https://doi.org/10.1016/j.solener.2008.07.011
  105. Kistler, BL. A user's manual for DELSOL3: A computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants. Sandia report, SAND 86-8018 (1986). https://doi.org/10.2172/7228886
  106. Reynolds, D.J., Jance, M.J., Behnia, M., Morrison, G.L., 2004. An experimental and computational study of the heat loss characteristics of a trapezoidal cavity absorber. Solar Energy 76 (1-3), 229-234. https://doi.org/10.1016/j.solener.2003.01.001
  107. Paitoonsurikarn, S., Lovegrove, K., 2006. A new correlation for predicting the free convection loss from solar dish concentrating receivers. In: Proceedings of 44th ANZSES Conference, Australia.
  108. Hazmoune M., Aour B., Chesneau X., Debbache M., Ciupageanu D. A., Lazaroiu G., Mondji Hadjiat M., Hamidat A., Numerical Analysis of a Solar Tower Receiver Novel Design Sustainability 2020, 12, 6957. https://doi.org/10.3390/su12176957
  109. Wu Shuangying, Xiao Lan, Cao Yiding, Li Yourong. 2010. Convection heat loss from cavity receiver in parabolic dish solar thermal power system: a review. Solar Energy 84 (8), 1342-1355. https://doi.org/10.1016/j.solener.2010.04.008
  110. Facão J, Varga S, Oliveira AC. Evaluation of the use of artificial neural networks for the simulation of hybrid solar collectors, International Journal of Green Energy, Vol. 1, No. 3, 2004, pp. 337 - 352. https://doi.org/10.1081/GE-200033649
  111. Benazzouz D, Benammar S, Adjerid S. Fault Detection and Isolation Based on Neural Networks Case Study: Steam Turbine. Energy and Power Engineering, 2011, 3, 513-516. https://doi.org/10.4236/epe.2011.34062
  112. Esen H, Ozgen F, Esen M, Sengur A. Artificial neural network and wavelet neural network approaches for modelling of a solar air heater, Exp. Syst. Appl. 36 (8) (2009) 1240-11248. https://doi.org/10.1016/j.eswa.2009.02.073
  113. Chaouachi A, Kamel R M, Ichikawa R, Hayashi H, Nagasaka K. "Neural Network Ensemble-based Solar Power Generation Short-Term Forecasting" World Academy of Science, Engineering and Technology 54 2009.
  114. Mellit A., Pavan A. M. « A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy" Solar Energy 84 (2010) 807-821. https://doi.org/10.1016/j.solener.2010.02.006
  115. Kalogirou SA. Solar thermal collectors and applications, Progress in Energy and Combustion Science 30 (2004) https://doi.org/10.1016/j.pecs.2004.02.001
  116. Martin J, Vitko J. ASCUAS: a solar central receiver utilizing a solid thermal carrier, Sandia National Laboratories, SAND 82-8203; 1982. https://doi.org/10.2172/5663779
  117. Caner M, Gedik E, Kecebas A. Investigation on thermal performance calculation of two type solar air collectors using artificial neural network, Exp. Syst. Appl., 2011, 38, 1668- 1674. https://doi.org/10.1016/j.eswa.2010.07.090
  118. Benammar S., Mohammedi K., Khellaf A. Prediction of the Central Cavity Receiver's Performance Using Artificial Neural Network. 1st International Conference on Applied Automation and Industrial Diagnostics (ICAADI' 2015), DJELFA, Algeria from 29 to 30 Mars 2015.
  119. Pfahl, A. and Uhlemann, H. (2011) 'Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers', J. Wind Eng. Ind. Aerodyn., Vol. 99, No. 9, pp.964-968. https://doi.org/10.1016/j.jweia.2011.06.009
  120. Al-Rabghi, O.M. and Elsayed, M.M. (1991) 'Heliostat minimum radial spacing for no blocking and shadowing condition', Renewable Energy, Vol. 1, No. 1, pp.37-47. https://doi.org/10.1016/0960-1481(91)90101-T
  121. Siala, F.M.F. and Elayeb, M.E. (2001) 'Mathematical formulation of a graphical method for a no-blocking heliostat field layout', Renewable Energy, Vol. 23, No. 1, pp.77-92. https://doi.org/10.1016/S0960-1481(00)00159-2
  122. Sanchez, M. and Romero, M. (2006) 'Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces', Solar Energy, Vol. 80, No. 7, pp.861-874. https://doi.org/10.1016/j.solener.2005.05.014
  123. Collado, F.J. (2009) 'Preliminary design of surrounding heliostat fields', Renewable Energy, Vol. 34, No. 5, pp.1359- 1363. https://doi.org/10.1016/j.renene.2008.09.003
  124. Pitz-Paal, R., Botero, N.B. and Steinfeld, A. (2011) 'Heliostat field layout optimization for high-temperature solar thermochemical processing', Solar Energy, Vol. 85, No. 2, pp.334-343. https://doi.org/10.1016/j.solener.2010.11.018
  125. Collado, F.J. and Guallar, J. (2012) 'Campo: generation of regular heliostat fields', Renewable Energy, Vol. 46, pp.49- 59. https://doi.org/10.1016/j.renene.2012.03.011
  126. Noone C. J., Torrilhon M., Mitsos A. Heliostat field optimization: A new computationally efficient model and biomimetic layout. Solar Energy. Volume 86, Issue 2, February 2012, Pages 792-803. https://doi.org/10.1016/j.solener.2011.12.007
  127. Cruz N.C., Salhi S., Redondo J. L., Álvarez J. D., Berenguel M., Ortigosa P.M. Hector, a new methodology for continuous and pattern-free heliostat field optimization. Applied Energy. Volume 225, 1 September 2018, Pages 1123-1131. https://doi.org/10.1016/j.apenergy.2018.05.072
  128. Peglow, S.G. (1979) Wind Tunnel Study of a Full-Scale Heliostat, Tech. Rep. SAND79-8034, Sandia National Laboratories, Livermore, CA. https://doi.org/10.2172/6241465
  129. Peterka, J.A. and Derickson, R.G. (1992) Wind Load Design Methods for Ground-Based Heliostats and Parabolic Dish Collectors, Tech. Rep. SAND92-7009, Sandia National Laboratories, Albuquerque, NM. https://doi.org/10.2172/7105290
  130. Peterka, J.A., Tan, Z., Cermak, J. and Bienkiewicz, N. (1989) 'Mean and peak wind loads on heliostats', Journal of Solar Energy Engineering, Vol. 111, No. 2, pp.158-164. https://doi.org/10.1115/1.3268302
  131. Pfahl, A. and Uhlemann, H. (2011) 'Wind loads on heliostats and photovoltaic trackers at various Reynolds numbers', J. Wind Eng. Ind. Aerodyn., Vol. 99, No. 9, pp.964-968. https://doi.org/10.1016/j.jweia.2011.06.009
  132. Gong B., Li Z., Wang Z., Wang Y. Wind-induced dynamic response of Heliostat. Renewable Energy Volume 38, Issue 1, February 2012, Pages 206-213. https://doi.org/10.1016/j.renene.2011.07.025
  133. Zang CC, Christian JM, Yuan JK, Sment J, Moya AC, Ho C.K., Wang Z.F. Numerical simulation of wind loads and wind induced dynamic response of heliostats. Energy Procedia. Volume 49, 2014, Pages 1582-1591. https://doi.org/10.1016/j.egypro.2014.03.167
  134. Vásquez-Arango JF, Buck R, Pitz-Paal R. Dynamic Properties of a Heliostat Structure Determined by Numerical and Experimental Modal Analysis. Journal of Solar Energy Engineering. Oct 2015, 137(5): 051001 (5 pages). https://doi.org/10.1115/1.4030846
  135. Poulain P.E., Craig K.J., Meyer, J P. Variation of the height of centerline of a heliostat and influence on the wind loading. 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.
  136. Zang, C., Wang, Z., Liu, X., Zhang, X. and Wang, Y. (2007) 'Design and analysis of heliostat support structure', Proceedings of ISES World Congress, Vols. 1-5.
  137. Thalange V C., Dalvi V H., Mahajani S M., Panse S V., Joshi J B, Patil R N. Design, optimization and optical performance study of tripod heliostat for solar power tower plant. Energy. Volume 135, 15 September 2017, Pages 610-624. https://doi.org/10.1016/j.energy.2017.06.
  138. Griffith D T, Moya A C, Ho C K, Hunter P S. Structural Dynamics Testing and Analysis for Design Evaluation and Monitoring of Heliostats. Energy Sustainability. 2011-54222, pp. 567-576. https://doi.org/10.1115/ES2011-54222
  139. Blackmon, J.B., 2014. Heliostat drive unit design considerations - site wind load effects on projected fatigue life and safety factor. Sol. Energy, vol. 105, pp. 170-180. https://doi.org/10.1016/j.solener.2014.02.045
  140. Modi, A., Haglind, F. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation. Applied Thermal Engineering, 2014, 65 201-208. https://doi.org/10.1016/j.applthermaleng.2014.01.010
  141. Ho, CK and Kolb, GJ. Incorporating Uncertainty Into Probabilistic Performance Models of Concentrating Solar Power Plants. Journal of Solar Energy Engineering, 2010, Vol. 132 / 031012. https://doi.org/10.1115/ES2009-90034