Skip to main navigation menu Skip to main content Skip to site footer


Vol. 8 (2021)

Quasi-Gaussian Multibeam Solar Laser Station for a Megawatt Solar Furnace

March 22, 2021


An alternative multirod solar side-pumping concept for the production of multiple quasi-Gaussian beams is proposed. This scheme was based on the One-Megawatt solar furnace in Odeillo, France, which collected and concentrated the solar light into a multilayered pyramidal pumping cavity placed at the focal zone. Each layer was comprised of a square array of four laser heads, each composed of a biconic surface that reflected the solar rays towards a Nd:YAG rod fixed inside a fused silica flow tube. A pyramidal reflector was placed inside the pumping cavity to close it and maximize the harness of solar energy. Compared to the previous multibeam solar laser station design for the same solar furnace, considerable alleviation of thermal lensing effects was achieved with the present approach, allowing the improvement of the laser beam quality factors and, consequently, the possibility of a 32-laser-beam generation, each with a quasi-Gaussian profile. For this case, 9.44 kW total laser power was calculated. Additionally, 20.01 kW total multimode laser power was numerically determined, which corresponds to a 10.93 W/m2 collection efficiency and a 2.0% solar-to-laser power conversion efficiency.


  1. Rather JDG, Gerry ET, Zeiders GW. Investigation of possibilities for solar powered high energy lasers in space. NASA Tech Reports Serv1977;
  2. Weksler M, Shwartz J. Solar-pumped solid-state lasers. IEEE J Quantum Electron [Internet]1988 Jun; 24(6): 1222-8. Available from:
  3. Vasile M, Maddock CA. Design of a formation of solar pumped lasers for asteroid deflection. Adv Sp Res [Internet]2012 Oct; 50(7): 891-905.
  4. Yabe T, Uchida S, Ikuta K, Yoshida K, Baasandash C, Mohamed MS, et al. Demonstrated fossil-fuel-free energy cycle using magnesium and laser. Appl Phys Lett [Internet]2006 Dec 25; 89(26): 261107. Available from:
  5. Oliveira M, Liang D, Almeida J, Vistas CR, Gonçalves F, Martins R. A path to renewable Mg reduction from MgO by a continuous-wave Cr: Nd: YAG ceramic solar laser. Sol Energy Mater Sol Cells [Internet]2016 Oct; 155: 430-5.
  6. Kiss ZJ, Lewis HR, Duncan Jr. RC. Sun Pumped Continuous Optical Maser. Appl Phys Lett [Internet]1963; 2(5): 93-4.
  7. Maiman TH. Stimulated Optical Radiation in Ruby. Nature [Internet]1960 Aug; 187(4736): 493-4. Available from:
  8. Young CG. A Sun-Pumped cw One-Watt Laser. Appl Opt [Internet]1966 Jun 1; 5(6): 993.
  9. Arashi H, Oka Y, Sasahara N, Kaimai A, Ishigame M. A Solar-Pumped cw 18 W Nd: YAG Laser. Jpn J Appl Phys [Internet]1984 Aug 20; 23(Part 1, No. 8): 1051-3. Available from:
  10. Lando M, Kagan J, Linyekin B, Dobrusin V. A solar-pumped Nd: YAG laserin the high collection efficiency regime. Opt Commun [Internet]2003 Jul; 222(1-6): 371-81.
  11. Jenkins D, Lando M, Winston R, O’Gallagher J. A solar-pumped Nd: YAG laser with a record efficiency of 4.7 watt/m2of primary mirror area. Bull Isr Phys Soc1996; 42(101).
  12. Liang D, Vistas CR, Tibúrcio BD, Almeida J. Solar-pumped Cr: Nd: YAG ceramic laser with 6.7% slope efficiency. Sol Energy Mater Sol Cells[Internet]2018 Oct; 185(March): 75-9.
  13. Yabe T, Ohkubo T, Uchida S, Yoshida K, Nakatsuka M, Funatsu T, et al. High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium. Appl Phys Lett [Internet]2007 Jun 25; 90(26): 261120.
  14. Liang D, Almeida J. Highly efficient solar-pumped Nd: YAG laser. Opt Express [Internet]2011 Dec 19; 19(27): 26399.
  15. Dinh TH, Ohkubo T, Yabe T, Kuboyama H. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd: YAG rod. Opt Lett [Internet]2012 Jul 1; 37(13): 2670.
  16. Almeida J, Liang D, Guillot E. Improvement in solar-pumped Nd: YAG laser beam brightness. Opt Laser Technol [Internet]2012 Oct; 44(7): 2115-9.
  17. Almeida J, Liang D, Guillot E, Abdel-Hadi Y. A 40 W cw Nd: YAG solar laserpumped through a heliostat: a parabolic mirror system. Laser Phys [Internet] 2013 Jun 1; 23(6): 065801.
  18. Xu P, Yang S, Zhao C, Guan Z, Wang H, Zhang Y, et al. High-efficiency solar-pumped laser with a grooved Nd: YAG rod. Appl Opt [Internet]2014 Jun 20; 53(18): 3941.
  19. Liang D, Almeida J, Vistas CR, Guillot E. Solar-pumped Nd: YAG laser with 31.5 W/m2multimode and 7.9 W/m2TEM00-mode collection efficiencies. Sol Energy Mater Sol Cells [Internet]2017 Jan; 159: 435-9.
  20. Guan Z, Zhao C, Li J, He D, Zhang H. 32.1 W/m2continuous wave solar-pumped laser with a bonding Nd: YAG/YAG rod and a Fresnel lens. Opt Laser Technol [Internet]2018 Nov; 107: 158-61.
  21. Hwang IH, Lee JH. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers. IEEE J Quantum Electron [Internet]1991; 27(9): 2129-34. Available from:
  22. Fazilov A, Riskiev TT, Abdurakhmanov AA, Bakhramov SA, Makhkamov S, Mansurov MM, et al. Concentrated solar energy conversion to powerful laser radiation on neodymium activated yttrium-aluminum garnet. Appl Sol Energy [Internet]2008 Jun 22; 44(2): 93-6. Available from:
  23. Tibúrcio BD, Liang D, Almeida J, Garcia D, Vistas CR. Dual-rod pumping concept for TEM00-mode solar lasers. Appl Opt [Internet]2019 May 1; 58(13): 3438.
  24. Almeida J, Liang D, Tibúrcio BD, Garcia D, Vistas CR. Numerical modeling of a four-rod pumping scheme for improving TEM00-mode solar laser performance. J Photonics Energy [Internet]2019 Feb 20; 9(01): 1.
  25. Liang D, Almeida J, Garcia D, Tibúrcio BD, Guillot E, Vistas CR. Simultaneous solar laser emissions from three Nd: YAG rods within a single pump cavity. Sol Energy [Internet]2020 Mar; 199: 192-7.
  26. Almeida J, Liang D, Costa H, Garcia D, Tibúrcio BD, Catela M, et al. Seven-rod pumping concept for simultaneous emission of seven TEM00-mode solar laser beams. J Photonics Energy [Internet]2020; 10(3): 038001.
  27. Costa H, Almeida J, Liang D, Garcia D, Catela M, Tibúrcio BD, et al. Design of a multibeam solar laser station for a megawatt solar furnace. Opt Eng [Internet]2020; 59(8): 086103.
  28. Guillot E, Rodriguez R, Boullet N, Sans J-L. Some details about the third rejuvenation of the 1000 kWth solar furnace in Odeillo: Extreme performance heliostats. In: AIP Conference Proceedings [Internet]2018. p. 040016. Available from:
  29. SFERA. Access to PROMES facilities [Internet]. [cited 2020 May 6]. Available from:
  30. Lupei V, Lupei A, Gheorghe C, Ikesue A. Emission sensitization processes involving Nd3+in YAG. J Lumin [Internet]2016 Feb; 170: 594-601.
  31. ASTM G173-03(2012), Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. West Conshohocken, PA: ASTM International; 2012.
  32. Zhao B, Changming Z, He J, Yang S. The study of active medium for solar-pumpedsolid-state lasers. Acta Opt Sin2007; 27(10): 1797-1801.
  33. Turkyilmazoglu M. Heat transfer from warm water to a moving foot in a footbath. Appl Therm Eng [Internet]2016 Apr; 98: 280-7.
  34. Turkyilmazoglu M. Thermal management of parabolic pin fin subjected to a uniform oncoming airflow: optimum fin dimensions. J Therm Anal Calorim [Internet]2021 Mar 19; 143(5): 3731-9.
  35. Koechner W. Solid-State Laser Engineering [Internet]. 5th ed. Springer-Verlag Berlin Heidelberg; 1999. (Springer Series in Optical Sciences).